首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the failure mode of laser welds in lap‐shear specimens of non‐galvanized SAE J2340 300Y high strength low alloy steel sheets under quasi‐static loading conditions is examined based on experimental observations and finite element analyses. Laser welded lap‐shear specimens with reduced cross sections were made. Optical micrographs of the cross sections of the welds in the specimens before and after tests are examined to understand the microstructure and failure mode of the welds. Micro‐hardness tests were also conducted to provide an assessment of the mechanical properties in the base metal, heat‐affected and fusion zones. The micrographs indicate that the weld failure appears to be initiated from the base metal near the boundary of the base metal and the heat‐affected zone at a distance away from the pre‐existing crack tip, and the specimens fail due to the necking/shear of the lower left load carrying sheets. Finite element analyses based on non‐homogenous multi‐zone material models were conducted to model the ductile necking/shear failure and to obtain the J integral solutions for the pre‐existing cracks. The results of the finite element analyses are used to explain the ductile failure initiation sites and the necking/shear of the lower left load carrying sheets. The J integral solutions obtained from the finite element analyses based on the 3‐zone finite element model indicate that the J integral for the pre‐existing cracks at the failure loads are low compared to the fracture toughness and the specimens should fail in a plastic collapse or necking/shear mode. The effects of the sheet thickness on the failure mode were then investigated for laser welds with a fixed ratio of the weld width to the thickness. For the given non‐homogenous material model, the J integral solutions appear to be scaled by the sheet thickness. With consideration of the plastic collapse failure mode and fracture initiation failure mode, a critical thickness can be obtained for the transition of the plastic collapse or necking/shear failure mode to the fracture initiation failure mode. Finally, the failure load is expressed as a function of the sheet thickness according to the governing equations based on the two failure modes. The results demonstrate that the failure mode of welds of thin sheets depends on the sheet thickness, ductility of the base metal and fracture toughness of the heat‐affected zone. Therefore, failure criteria based on either the plastic collapse failure mode or the fracture initiation failure mode should be used cautiously for welds of thin sheets.  相似文献   

2.
Failure behavior of low carbon steel resistance spot welds in quasi-static tensile–shear test is investigated. Microstructure, hardness profile and mechanical performance of the spot welds were studied. Results showed that spot welds are failed in two distinct failure modes: double-pullout and interfacial failure modes. There is a critical fusion zone size beyond which, pullout failure mode is guaranteed. Metallographic examination showed that failure is a competitive process between shear plastic deformation of weld nugget and necking of the base metal. In pullout failure mode, only the grain pattern of the base metal changes significantly and that of the fusion zone and heat affected zone remains unchanged. Strain localization was occurred in the base metal due to its low hardness. Moreover, the experimental results showed that increasing the holding time which increases the hardness of the fusion zone did not affect the peak load. It was concluded that in the pullout failure mode, the strength of the spot welds is not affected by the fusion zone strength. Fusion zone size proved to be the most important controlling factor for the spot welds’ mechanical performance in terms of peak load and energy absorption.  相似文献   

3.
In this paper, the failure mechanism of resistance spot welds in dual-phase steel lap-shear specimens is investigated based on experimental observations, two-dimensional elasticity theories and two-dimensional finite element analyses. Optical micrographs of the cross sections of spot welds in lap-shear specimens of a dual-phase steel before and after failure are first examined to understand the failure mechanism. The experimental results suggest that under lap-shear loading conditions, a necking failure is initiated near the middle of the nugget circumference in the base metal and then the failure propagates along the nugget circumference in the sheet to final fracture. Based on the stress function approach of the elasticity theory, an analytic solution for an infinite plate containing a rigid inclusion subjected to a resultant shear force is developed and used to investigate the stress and strain distributions near the nugget in lap-shear specimens. The results of the elastic analytic solution and those of a two-dimensional elastic finite element analysis indicate that the initial yielding starts on the two side edges of the inclusion in the sheet. However, the results of a two-dimensional elastic-plastic finite element analysis indicate that as the applied displacement increases, the maximum equivalent plastic strain shifts from the two side edges of the inclusion to the middle of the inclusion along the inclusion circumference in the sheet. The computational results suggest that the location of the initial necking failure should occur near the middle of the nugget circumference in the sheet as observed in experiments based on the forming limit diagram (FLD) for ductile sheet metals.  相似文献   

4.
Laser welds are prevalent in complex engineering systems and they frequently govern failure. The weld process often results in partial penetration of the base metals, leaving sharp crack‐like features with a high degree of variability in the geometry and material properties of the welded structure. Accurate finite element predictions of the structural reliability of components containing laser welds requires the analysis of a large number of finite element meshes with very fine spatial resolution, where each mesh has different geometry and/or material properties in the welded region to address variability. Traditional modeling approaches cannot be efficiently employed. To this end, a method is presented for constructing a surrogate model, based on stochastic reduced‐order models, and is proposed to represent the laser welds within the component. Here, the uncertainty in weld microstructure and geometry is captured by calibrating plasticity parameters to experimental observations of necking as, because of the ductility of the welds, necking – and thus peak load – plays the pivotal role in structural failure. The proposed method is exercised for a simplified verification problem and compared with the traditional Monte Carlo simulation with rather remarkable results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Fatigue behavior of laser welds in lap-shear specimens of high strength low alloy (HSLA) steel is investigated based on experimental observations and two fatigue life estimation models. Fatigue experiments of laser welded lap-shear specimens are first reviewed. Analytical stress intensity factor solutions for laser welded lap-shear specimens based on the beam bending theory are derived and compared with the analytical solutions for two semi-infinite solids with connection. Finite element analyses of laser welded lap-shear specimens with different weld widths were also conducted to obtain the stress intensity factor solutions. Approximate closed-form stress intensity factor solutions based on the results of the finite element analyses in combination with the analytical solutions based on the beam bending theory and Westergaard stress function for a full range of the normalized weld widths are developed for future engineering applications. Next, finite element analyses for laser welded lap-shear specimens with three weld widths were conducted to obtain the local stress intensity factor solutions for kinked cracks as functions of the kink length. The computational results indicate that the kinked cracks are under dominant mode I loading conditions and the normalized local stress intensity factor solutions can be used in combination with the global stress intensity factor solutions to estimate fatigue lives of laser welds with the weld width as small as the sheet thickness. The global stress intensity factor solutions and the local stress intensity factor solutions for vanishing and finite kinked cracks are then adopted in a fatigue crack growth model to estimate the fatigue lives of the laser welds. Also, a structural stress model based on the beam bending theory is adopted to estimate the fatigue lives of the welds. The fatigue life estimations based on the kinked fatigue crack growth model agree well with the experimental results whereas the fatigue life estimations based on the structural stress model agree with the experimental results under larger load ranges but are higher than the experimental results under smaller load ranges.  相似文献   

6.
Ductile plug failure of resistance spot welded shear-lab specimens is studied by full 3D finite element analysis, using an elastic-viscoplastic constitutive relation that accounts for nucleation and growth of microvoids to coalescence (The Gurson model). Tensile properties and damage parameters are based on uni-axial tensile testing of the basis material, while the modelled tensile response of the shear-lab specimens is compared to experimental results for the case of a ductile failure near the heat affected zone (HAZ). A parametric study for a range of weld diameters is carried out, which makes it possible to numerically relate the weld diameter to the tensile shear force (TSF) and the associated displacement, u TSF , respectively. Main focus in the paper is on modelling the localization of plastic flow and the corresponding damage development in the vicinity of the spot weld, near the HAZ. For decreasing weld diameter, localization of plastic flow may be observed to occur in the weld nugget, introducing significant shearing. Due to these competing mechanisms a critical transition radius of the weld may be found. However, due to the limitation of the Gurson model in describing ductile failure at very low stress triaxiality, further analysis of the shear failure is omitted.  相似文献   

7.
Friction stir butt welds in 6063-T4 aluminium alloy were obtained using square and two tapered tool pin profiles. Tensile tests at 0°, 45°, and 90° to the weld line, hardness contours in the weld cross-section, temperatures in the heat affected zones, cross-sectional macrographs, transmission electron micrographs, and X-ray diffraction studies were used to characterize the welds. In transverse weld specimen, tunnel defects appearing at higher weld speeds for tapered pin profiles, were found to result in mechanical instabilities, i.e. sharp drops in load–displacement curves, much before macroscopic necking occured. Further, in comparison to the base metal, a marked reduction in ductility was observed even in transverse specimen with defect free welds. Hardness contours in the weld cross-section suggest that loss in ductility is due to significant softening in heat affected zone on the retreating side. Transmission electron microscopy images demonstrate that while recovery and overaging are responsible for softening in the heat affected zone, grain size refinement from dynamic recrystallization is responsible for strengthening of the weld nugget zone. X-ray diffraction studies in the three weld zones: weld nugget zone, heat affected zone, and the base metal corroborate these findings. A weld zone model, for use in forming simulations on friction stir welded plates of naturally aged aluminium alloys, was proposed based on mechanical characterization tests. The model was validated using finite element analysis.  相似文献   

8.
In this paper, analytical stress intensity factor and J integral solutions for resistance and friction stir spot welds without and with gap and bend in lap-shear specimens of different materials and thicknesses are developed. The J integral and stress intensity factor solutions for spot welds are first presented in terms of the structural stresses for a strip model. Analytical structural stress solutions for spot welds without and with gap and bend in lap-shear specimens are then developed based on the closed-form structural stress solutions for a rigid inclusion in a finite thin plate subjected to various loading conditions. With the available structural stress solutions, the analytical J integral and stress intensity factor solutions can be obtained as functions of the applied load, the elastic material property parameters, and the geometric parameters of the weld and specimen. The analytical stress intensity factor solutions are selectively validated by the results of three-dimensional finite element analyses for a spot weld with ideal geometry and for a friction stir spot weld with complex geometry, gap and bend. The stress intensity factor and J integral solutions at the critical locations of spot welds in lap-shear specimens of dissimilar magnesium, aluminum and steel sheets with equal and different thicknesses are then presented in the normalized forms as functions of the ratio of the specimen width to the weld diameter. Finally, general trends and simple estimation methods of the stress intensity factor and J integral solutions at the critical locations of spot welds in lap-shear specimens of different materials and thicknesses are given for convenient engineering applications.  相似文献   

9.
In this paper, three-dimensional finite element analyses for spot welds with ideal geometry in lap-shear specimens of different materials and thicknesses were first conducted. The computational results indicate that the stress intensity factor and J integral solutions based on the finite element analyses agree well with the analytical solutions and that the analytical solutions can be used with a reasonable accuracy. Three-dimensional finite element analyses based on the micrographs of an aluminum 6111 resistance spot weld, an aluminum 5754 spot friction weld, and a dissimilar Al/Fe spot friction weld were also conducted. The computational results indicate that the stress intensity factor and J integral solutions based on the finite element analyses for the aluminum 6111 resistance spot weld and aluminum 5754 spot friction weld with complex geometry are in good agreement with the analytical solutions for the equivalent spot welds with ideal geometry. However, the stress intensity factor and J integral solutions based on the finite element analysis for the Al/Fe spot friction weld with complex geometry are completely different from the analytical solutions for the equivalent spot weld with ideal geometry. Different three-dimensional finite element analyses based on the meshes that represent different features of the complex geometry of the Al/Fe spot friction weld were then conducted. The computational results indicate that the stress intensity factor and J integral solutions for the Al/Fe spot friction weld based on the finite element analysis agree reasonably well with the analytical solutions for the equivalent spot weld with consideration of gap and bend. The computational and analytical results suggest that the stress intensity factor and J integral solutions based on the finite element analysis and the analytical solutions with consideration of gap and bend may be used to correlate with the fatigue crack growth patterns of Al/Fe spot friction welds observed in experiments.  相似文献   

10.
目的 研究304不锈钢和PA66(尼龙)的焊接工艺,提高焊缝剪切强度。方法 采用500 W光纤激光器对异种材料进行搭接焊接实验,对激光功率、焊接速度、离焦量、焊接次数进行四因素四水平正交实验,并且测试焊缝剪切强度。结果 当激光功率为350 W,焊接速度为600 mm/s,离焦量为1 mm,焊接次数为3时,焊缝剪切强度达到最大的58 MPa。极差分析结果表明,影响焊缝剪切强度的因素依次为激光功率、离焦量、焊接速度、焊接次数。结论 微观结构分析结果表明,焊缝在PA66塑料侧呈现韧性断裂;在304不锈钢侧呈现韧性脱落,塑料和不锈钢有紧密的贴合,这种结构有利于提高焊缝的剪切强度。  相似文献   

11.
Damage of Advanced High Strength Steel resistance spot welds is investigated in Cross Tension by means of coupled microtomography, metallography and fractography. Three main failure mechanisms and failure zones are identified: (i) strain localization in the base metal/sub-critical Heat Affected Zone (HAZ), (ii) ductile shear around the weld and (iii) semi-brittle fracture in the weld nugget. A finite element model is developed in order to illustrate how the mechanisms compete and lead to a given failure type. The local constitutive behavior is obtained from tensile tests on simulated HAZ microstructures. The model enables capturing the main trends in the transition between failure types as a function of weld geometry as well as a reliable estimation of the load bearing capacity.  相似文献   

12.
Friction stir lap welds were produced in 3 mm thick Alclad sheets of Al alloy 2014-T4 using two different tools (with triangular and threaded taper cylindrical pins). The effects of tool geometry on weld microstructure, lap-shear performance and failure mode were investigated. The pin profile was found to significantly influence the hook geometry, which in turn strongly influenced the joint strength and the failure mode. Welds produced in alloy 2014-T4 Alclad sheets by using triangular and threaded taper cylindrical tools exhibited an average lap-shear failure load of 16.5 and 19.5 kN, respectively, while the average failure load for standard riveted joints was only 3.4 kN. Welds produced in alloy 2014-T6 Alclad sheets and in alloy 2014-T4 bare sheets (i.e., no Alclad) were comparatively evaluated with those produced in alloy 2014-T4 Alclad sheets. While the welds made (with threaded taper cylindrical tool) in T6 and T4 conditions showed very similar lap-shear failure loads, the joint efficiency of the welds made in T6 condition (43%) was considerably lower (because of the higher base material strength) than those made in T4 condition (51%). The Alclad layers were found to present no special problems in friction stir lap welding. Welds made with triangular tool in alloy 2014-T4 Alclad and bare sheets showed very similar lap-shear failure loads. The present work provides some useful insights into the use of friction stir welding for joining Al alloys in lap configuration.  相似文献   

13.
目的 提高PA66塑料的焊缝剪切强度,达到实际生产要求.方法 采用高速扫描振镜对PA66塑料进行扫描激光焊接,分析重复焊接次数对塑料焊缝外观及剪切强度的影响,并且对焊缝截面进行测试,分析工艺参数对焊缝截面的影响规律.通过对工艺参数(激光平均功率、重复焊接次数、焊接速度、离焦量)进行四因素四水平正交实验,得到焊缝剪切强度...  相似文献   

14.
In this investigation, hybrid laser/arc welding (HLAW) was employed to join 8-mm-thick high-strength quenched and tempered steel (HSQTS) plates in the butt-and T-joint configurations. The influences of welding parameters, such as laser power, welding speed, stand-off distance (SD) between the arc of gas metal arc welding, and the laser heat source on the weld quality and mechanical properties of joints, were studied to obtain non-porous and crack-free fully-penetrated welds. The weld microstructure, crosssection, and mechanical properties were evaluated by an optical microscope, and microhardness and tensile tests. In addition, a finite element model was developed to investigate the thermal history and molten pool geometry of the HLAW process to join the HSQTS. The numerical study demonstrated that the SD had a paramount role in good synergy between the heat sources and the stability of the keyhole. For the butt-joint configuration, the results showed that, at a higher welding speed (35 mm/s) and optimum SD between the arc and laser, a fully-penetrated sound weld could be achieved. A non-porous weld in the T-joint configuration was obtained at a lower welding speed (10 mm/s). Microstructural evaluations indicated that the formation of residual austenite and the continuous network of martensitic structure along the grain boundary through the heat affected zone were the primary reasons of the softening behavior of this area. This was confirmed by the sharp hardness reduction and failure behavior of the tensile coupons in this area.The full text can be downloaded at https://link.springer.com/article/10.1007/s40436-017-0193-6  相似文献   

15.
Laser welding is a high power density welding technology, which has the capability of focusing the beam power to a very small spot diameter. Its characteristics such as high precision and low and concentrated heat input, helps in minimizing the micro-structural modifications, residual stresses and distortions on the welded specimens. In this study, finite element method (FEM) is adopted for predicting the bead geometry in laser welding of 1.6 mm thick AISI304 stainless steel sheets. A three-dimensional finite element model is used to analyze the temperature distribution in a T-joint weld produced by the laser welding process. Temperature-dependent thermal properties of AISI304 stainless steel, effect of latent heat of fusion, and the convective and radiative boundary conditions are included in the model. The heat input to the model is assumed to be a 3D conical Gaussian heat source. The finite element code SYSWELD, along with a few FORTRAN subroutines, is employed to obtain the numerical results. The T-joint welds are made using a Nd:YAG laser having a maximum power of 2 kW in the continuous wave mode. The effect of laser beam power, welding speed and beam incident angle on the weld bead geometry (i.e. depth of penetration and bead width) are investigated. Finally, the shapes of the molten pool predicted by the numerical analysis are compared with the results obtained through the experimentation. The comparison shows that they are in good agreement.  相似文献   

16.
An experimental procedure was developed to join thick advanced high strength steel plates by using the hybrid laser/arc welding (HLAW) process, for different butt joint configurations. The geometry of the weld groove was optimized according to the requirements of ballistic test, where the length of the softened heat affected zone should be less than 15.9 mm from the weld centerline. The cross-section of the welds was examined by microhardness test. The microstructure of welds was investigated by scanning electron microscopy and an optical microscope for further analysis of the microstructure of fusion zone and heat affected zone. It was demonstrated that by changing the geometry of groove, and increasing the stand-off distance between the laser beam and the tip of wire in gas metal arc welding (GMAW) it is possible to reduce the width of the heat affected zone and softened area while the microhardness stays within the acceptable range. It was shown that double Y-groove shape can provide the optimum condition for the stability of arc and laser. The dimensional changes of the groove geometry provided substantial impact on the amount of heat input, causing the fluctuations in the hardness of the weld as a result of phase transformation and grain size. The on-line monitoring of HLAW of the advanced high strength steel indicated the arc and laser were stable during the welding process. It was shown that less plasma plume was formed in the case where the laser was leading the arc in the HLAW, causing higher stability of the molten pool in comparison to the case where the arc was leading.  相似文献   

17.
Cross weld tensile testing is widely used in the industry to qualify welds. In these conventional testing fracture load is measured and the location of fracture (weld metal, base metal or heat affected zone) is evaluated. Because the load-elongation curve depends on the location of fracture and the initial gauge length, it cannot be utilized in the failure assessment of weldments. Failure assessment of weldments requires input of true stress-strain behaviour for each material zone. In this paper, a notched cross weld tensile testing method is proposed for determining the true stress-strain curve for each material zone of a weldment. In the proposed method, cylindrical cross weld tensile specimens, with a notch located either in the weld metal, base metal or possibly heat affected zone are applied. Due to the notch, plastic deformation is forced to develop in the notched region. A load versus diameter reduction curve is recorded. It has been shown that the true strain at maximum load is independent of the notch geometry. Furthermore, the materials true stress-strain curve can be determined from the recorded load versus diameter reduction curve of a notched cross weld tensile specimen by dividing a geometry-factor G, which is approximated by a quadratic function of the specimen diameter to notch radius ratio and a linear function of the true strain at the maximum load. It is found that G is independent of the material zone length when the homogenous material length is larger or equal to the minimum diameter.  相似文献   

18.
Abstract

Resistance spot welding is the dominant process for joining sheet metals in automotive industry. Even thickness combinations are rarely used in practice; therefore, there is clearly a practical need for failure behaviour investigation of uneven thickness resistance spot welds. The aim of the present paper is to investigate the failure mode and failure mechanism of dissimilar thickness low carbon steel resistance spot welds during tensile shear overload test. Microstructural investigations, microhardness tests and tensile shear tests were conducted. Mechanical properties of the joints were described in terms of peak load, energy absorption and failure mode. In order to understand the failure mechanism, micrographs of the cross-sections of the spot welded joints during and after tensile shear are examined by optical microscopy. It was found that for well established weld nuggets, the final solidification line is located in the geometrical centre of the joint. In pull-out failure mode, failure is initiated by necking of the base metal at the thinner thickness sheet. Finally, it was concluded that weld nugget size, weld penetration and the strength of the thinner sheet are the main controlling factors of the peak load and energy absorption of dissimilar thickness spot welds.  相似文献   

19.
A 980 MPa transformation induced plasticity (TRIP) steel was fibre laser spot welded by different Argon (Ar) shielding conditions, laser power (1000 up to 2500 W) and defocusing distances (?8 up to +8 mm). The surface appearance, cross-section macrostructure, microstructure, hardness, tensile shear properties and fatigue properties of laser spot welds were evaluated. The results showed that the welds with Ar shielding had larger weld appearance and bonding sizes, better tensile shear properties compared with the welds without Ar shielding. With the increase in laser power, the laser welding mode changed from conduction to keyhole, which improved the bonding size and mechanical properties. The bonding size and mechanical properties increased in the order of defocusing distances of +8, ?8, +4, ?4 and 0 mm. During the fatigue tests of laser spot weld, the fusion zone pullout and sheet transverse fracture failure modes were observed.  相似文献   

20.
The mechanical properties of dissimilar MMC/AISI 304 stainless steel friction welds with and without silver interlayers were examined. The notch tensile strengths of MMC/AISI 304 stainless steel and MMC/Ag/AISI 304 stainless steel friction welds increased when high friction pressures were applied during the joining operation. The higher notch tensile strengths of dissimilar MMC/AISI and MMC/Ag/AISI 304 stainless steel friction welds resulted from the formation of narrow softened zones in MMC material immediately adjacent to the bondline. The influence of softened zone width and hardness (yield strength) on the notch tensile strengths of dissimilar welds was analysed using finite element modelling (FEM). FEM in combination with the assumption of a ductile failure criterion was used to calculate the notch tensile strengths of dissimilar joints. The key assumption in this work is that dissimilar weld failure wholly depended on the characteristics (mechanical properties and dimensions) of the softened zone formed in MMC material immediately adjacent to the bondline. The modelling results produced based on this assumption closely correspond with the actual notch tensile strengths of dissimilar MMC/Ag/AISI 304 stainless steel and MMC/Ag/AISI 304 stainless steel friction welds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号