首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of cyclopiazonic acid and thapsigargin, selective inhibitors of the endoplasmic reticulum Ca2+-ATPase pump, on the platelet aggregation were investigated using washed rat platelets prepared by chromatography on Sepharose 2B columns. In Ca2+-free medium, cyclopiazonic acid and thapsigargin did not induce aggregation, but in the presence of 1 mM Ca2+, platelet aggregation was induced in a concentration-dependent manner. Cyclopiazonic acid- and thapsigargin-induced platelet aggregation was blocked by 1 mM Ni2+ but not by 100 microM indomethacin or 1 microM nifedipine. In aequorin-loaded platelets, cyclopiazonic acid and thapsigargin caused sustained elevation of the cytosolic Ca2+ concentration, an effect which was blocked by Ni2+, a non-selective Ca2+ channel blocker and SK&F 96365 (1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenyl]-1H-imidazole hydrochloride), a putative receptor-operated Ca2+ channel antagonist. The above results indicated that both cyclopiazonic acid and thapsigargin induced platelet aggregation and elevation of cytosolic Ca2+ concentration, that extracellular Ca2+ was essential for cyclopiazonic acid- and thapsigargin-induced platelet aggregation, and that platelet aggregation may be associated with Ca2+ influx through Ca2+ store-activated Ca2+ channels.  相似文献   

2.
Phosphorylation by protein kinase C of the "a" and "b" variants of plasma membrane Ca2+ pump isoforms 2 and 3 was studied. Full-length versions of these isoforms were assembled and expressed in COS cells. Whereas the "a" forms were phosphorylated easily with PKC, isoform 2b was phosphorylated only a little, and isoform 3b was not phosphorylated at all. Phosphorylation of isoforms 2a and 3a did not affect their basal activity, but prevented the stimulation of their activity by calmodulin and their binding to calmodulin-Sepharose. This indicated that phosphorylation prevented activation of these isoforms by preventing calmodulin binding. Based on these results, phosphorylation of the pump with PKC would be expected to increase free intracellular Ca2+ levels in those cells where isoforms 2a and 3a are expressed.  相似文献   

3.
The interaction of large depolarization and dihydropyridine Ca2+ agonists, both of which are known to enhance L-type Ca2+ channel current, was examined using a conventional whole-cell clamp technique. In guinea pig detrusor cells, only L-type Ca2+ channels occur. A second open state (long open state: O2) of the Ca2+ channels develops during large depolarization (at +80 mV, without Ca2+ agonists). This was judged from lack of inactivation of the Ca2+ channel current during the large depolarizing steps (5 s) and slowly deactivating inward tail currents (= 10-15 ms) upon repolarization of the cell membrane to the holding potential (-60 mV). Application of Bay K 8644 (in 2.4 mM Ca(2+)-containing solutions) increased the amplitude of the Ca2+ currents evoked by simple depolarizations, and made it possible to observe inward tail currents (= 2.5-5 ms at -60 mV). The open state induced by large depolarization (O2*) in the Bay K 8644 also seemed hardly to inactivate. After preconditioning with large depolarizing steps, the decay time course of the inward tail currents upon repolarization to the holding potential (-60 mV) was significantly slowed, and could be fitted reasonably with two exponentials. The fast and slow time constants were 10 and 45 ms, respectively, after 2 s preconditioning depolarizations. Qualitatively the same results were obtained using Ba2+ as a charge carrier. Although the amplitudes of the inward currents observed in the test step and the subsequent repolarization to the holding potential were decreased in the same manner by additional application of nifedipine (in the presence of Bay K 8644), the very slow deactivation time course of the tail current was little changed. The additive enhancement by large depolarization and Ca2+ agonists of the inward tail current implies that two mechanisms separately induce long opening of the Ca2+ channels: i.e., that there are four open states.  相似文献   

4.
5.
As metabotropic glutamate receptor type 1 (mGluR1) is known to couple L-type Ca2+ channels and ryanodine receptors (RyR, Chavis et al., 1996) in cerebellar granule cells, we examined if such a coupling could activate a Ca2+-sensitive K+ channel, the big K+ (BK) channel, in cultured cerebellar granule cells. We observed that (+/-)-1-amino-cyclopentane-trans-1,3-dicarboxylic acid (t-ACPD) and quisqualate (QA) stimulated the activity of BK channels. On the other hand, (2S, 3S, 4S)-alpha-carboxycyclopropyl-glycine (L-CCG-I) and L-(+)-2-amino-4-phosphonobutyrate (L-AP4) had no effect on BK channels, indicating a specific activation by group I mGluRs. Group I mGluRs stimulation of the basal BK channel activity was mimicked by caffeine and both effects were blocked by ryanodine and nifedipine. Interestingly, carbachol stimulated BK channel activity but through a pertussis toxin (PTX)-sensitive pathway that was independent of L-type Ca2+ channel activity. Our report indicates that unlike the muscarinic receptors, group I mGluRs activate BK channels by mobilizing an additional pathway involving RyR and L-type Ca2+ channels.  相似文献   

6.
In PC12, a cellular line derived from a rat pheochromocytoma, ethanol (EtOH) induces a different effect depending on the concentration used. When resting cells are incubated with an alcohol concentration less than or equal to 120 mM, the [Ca2+]i increased with a double phase pattern. If the alcohol concentration was increased over 120-160 mM, EtOH reversed its effect and the [Ca2+]i decreased. This decrease was strongly inhibited if KCl-depolarized cells were used and was completely abolished if the substrate constituted EtOH-chronically treated cells. The Ca2+ increase is the consequence of an activation of L-type voltage-activated channels, while the other voltage-dependent channels (N-type), the receptor-operated channels and the Ca2+ extrusion pump present in these cells are not involved in EtOH action. These findings indicate that EtOH can induce (by different mechanisms) both potentiating and inhibiting effects on [Ca2+]i in PC12 cells in relation to the alcohol dose effectively present in the suspension medium.  相似文献   

7.
8.
Microinjection of inositol 1,4,5-trisphosphate (InsP3) into intact skeletal muscle fibers isolated from frogs (Rana temporaria) increased resting cytosolic Ca2+ concentration ([Ca2+]i) as measured by double-barreled Ca2+-selective microelectrodes. In contrast, microinjection of inositol 1-phosphate, inositol 1,4-biphosphate, and inositol 1,4,5,6-tetrakisphosphate did not induce changes in [Ca2+]i. Incubation in low-Ca2+ solution, or in the presence of L-type Ca2+ channel blockers did not affect InsP3-induced release of cytosolic Ca2+. Neither ruthenium red, a blocker of ryanodine receptor Ca2+-release channels, nor cytosolic Mg2+, a known inhibitor of the Ca2+-induced Ca2+-release process, modified the InsP3-induced release of cytosolic Ca2+. However, heparin, a blocker of InsP3 receptors, inhibited InsP3-induced release of cytosolic Ca2+. Also, pretreatment with dantrolene or azumulene, two inhibitors of cytosolic Ca2+ release, reduced [Ca2+]i, and prevented InsP3 from inducing release of cytosolic Ca2+. Incubation in caffeine or lengthening of the muscle increased [Ca2+]i and enhanced the ability of InsP3 to induce release of cytosolic Ca2+. These results indicate that InsP3, at physiological concentrations, induces Ca2+ release in intact muscle fibers, and suggest that the InsP3-induced Ca2+ release is regulated by [Ca2+]i. A Ca2+-dependent effect of InsP3 on cytosolic Ca2+ release could be of importance under physiological or pathophysiological conditions associated with alterations in cytosolic Ca2+ homeostasis.  相似文献   

9.
The presence and physiological role of Ca2+-induced Ca2+ release (CICR) in nonmuscle excitable cells has been investigated only indirectly through measurements of cytosolic [Ca2+] ([Ca2+]c). Using targeted aequorin, we have directly monitored [Ca2+] changes inside the ER ([Ca2+]ER) in bovine adrenal chromaffin cells. Ca2+ entry induced by cell depolarization triggered a transient Ca2+ release from the ER that was highly dependent on [Ca2+]ER and sensitized by low concentrations of caffeine. Caffeine-induced Ca2+ release was quantal in nature due to modulation by [Ca2+]ER. Whereas caffeine released essentially all the Ca2+ from the ER, inositol 1,4, 5-trisphosphate (InsP3)- producing agonists released only 60-80%. Both InsP3 and caffeine emptied completely the ER in digitonin-permeabilized cells whereas cyclic ADP-ribose had no effect. Ryanodine induced permanent emptying of the Ca2+ stores in a use-dependent manner after activation by caffeine. Fast confocal [Ca2+]c measurements showed that the wave of [Ca2+]c induced by 100-ms depolarizing pulses in voltage-clamped cells was delayed and reduced in intensity in ryanodine-treated cells. Our results indicate that the ER of chromaffin cells behaves mostly as a single homogeneous thapsigargin-sensitive Ca2+ pool that can release Ca2+ both via InsP3 receptors or CICR.  相似文献   

10.
This study examined the potential roles of the plasma membrane Ca2+-ATPase (PMCA) at the blood-CSF and blood-brain barriers in brain Ca2+ homeostasis and blood-brain barrier Na+/K+-ATPase subunits in brain K+ homeostasis. During dietary-induced hypo- and hypercalcemia (0.59+/-0.06 and 1.58+/-0.12 mM [Ca2+]) there was no significant change in choroid plexus PMCA (Western Blots) compared to normocalcemic rats (plasma [Ca2+]: 1.06+/-0.11 mM). In contrast, PMCA in cerebral microvessels isolated from hypocalcemic rats was 150% greater than that in controls (p<0.001). Comparison of the alpha3 subunit of Na+/K+-ATPase from cerebral microvessels isolated from hypo-, normo- and hyperkalemic rats (2.3+/-0.1, 3.9+/-0.1 and 7. 2+/-0.6 mM [K+]) showed a 75% reduction in the amount of this isoform during hyperkalemia. None of the other Na+/K+-ATPase isoforms varied with plasma [K+]. These results suggest that both PMCA and the alpha3 subunit of Na+/K+-ATPase at the blood-brain barrier play a role in maintaining a constant brain microenvironment during fluctuations in plasma composition.  相似文献   

11.
Activation of L-type calcium channels in the neuroendocrine, cholecytstokinin-secreting cell line, STC-1, is vital for secretion of CCK. In the present study, the regulation of L-type Ca2+ channels by cAMP and Ca2+ calmodulin dependent protein kinase II (CaM-KII) in STC-1 cells was investigated. Exposure to 3-isobutyl-1-methylxanthine (IBMX) increased intracellular cAMP levels, whole cell Ca2+ currents and activated Ca2+ channels in cell-attached membrane patches. Furthermore, in Fura-2AM loaded cells, cytosolic Ca2+ levels increased upon exposure to IBMX. By contrast, pretreatment of cells with the CaM-KII inhibitor KN-62, prevented IBMX activation of Ca2+ channels in cell-attached patches or increases in cytosolic Ca2+ levels. Inclusion of the synthetic peptide fragment 290-309 of CaM-KII, a CaM-KII antagonist, in the pipette solution, blocked the activation of whole cell Ca2+ currents upon addition of IBMX. These results indicate a unique mechanism of L-type Ca2+ channel activation involving two phosphorylation events.  相似文献   

12.
The mechanism by which agonist-evoked cytosolic Ca2+ signals are terminated has been investigated. We measured the Ca2+ concentration inside the endoplasmic reticulum store of pancreatic acinar cells and monitored the cytoplasmic Ca2+ concentration by whole-cell patch-clamp recording of the Ca2+-sensitive currents. When the cytosolic Ca2+ concentration was clamped at the resting level by a high concentration of a selective Ca2+ buffer, acetylcholine evoked the usual depletion of intracellular Ca2+ stores, but without increasing the Ca2+-sensitive currents. Removal of acetylcholine allowed thapsigargin-sensitive Ca2+ reuptake into the stores, and this process stopped when the stores had been loaded to the pre-stimulation level. The apparent rate of Ca2+ reuptake decreased steeply with an increase in the Ca2+ concentration in the store lumen and it is this negative feedback on the Ca2+ pump that controls the Ca2+ store content. In the absence of a cytoplasmic Ca2+ clamp, acetylcholine removal resulted in a rapid return of the elevated cytoplasmic Ca2+ concentration to the pre-stimulation resting level, which was attained long before the endoplasmic reticulum Ca2+ store had been completely refilled. We conclude that control of Ca2+ reuptake by the Ca2+ concentration inside the intracellular store allows precise Ca2+ signal termination without interfering with store refilling.  相似文献   

13.
Presynaptic N-type calcium channels interact with syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) through a binding site in the intracellular loop connecting domains II and III of the alpha1 subunit. This binding region was loaded into embryonic spinal neurons of Xenopus by early blastomere injection. After culturing, synaptic transmission of peptide-loaded and control cells was compared by measuring postsynaptic responses under different external Ca2+ concentrations. The relative transmitter release of injected neurons was reduced by approximately 25% at physiological Ca2+ concentration, whereas injection of the corresponding region of the L-type Ca2+ channel had virtually no effect. When applied to a theoretical model, these results imply that 70% of the formerly linked vesicles have been uncoupled after action of the peptide. Our data suggest that severing the physical interaction between presynaptic calcium channels and synaptic proteins will not prevent synaptic transmission at this synapse but will make it less efficient by shifting its Ca2+ dependence to higher values.  相似文献   

14.
To examine the physiological roles of the delta subunit of Ca2+/calmodulin-dependent protein kinase II (CaM kinase IIdelta) in brain, we examined the localization of CaM kinase IIdelta in the rat brain. A specific antibody to CaM kinase IIdelta1-delta4 isoforms was prepared by immunizing rabbits with a synthesized peptide corresponding to the unique carboxyl-terminal end of these isoforms. The prepared antibody did not recognize the alpha, beta, and gamma subunits, which were each overexpressed in NG108-15 cells. Immunoblot analysis on various regions and the nuclear fractions from rat brains suggested that some isoforms of CaM kinase IIdelta1-delta4 were abundant in the nucleus in the cerebellum. Total RNA from the cerebellum was analyzed by RT-PCR with a primer pair from variable domain 1 to variable domain 2. We detected the three PCR products delta3.1, delta3.4, and delta3 that contained the nuclear localization signal. These CaM kinase IIdelta3 isoforms were localized in the nuclei in transfected NG108-15 cells. Immunohistochemical study suggested the existence of these isoforms in the nuclei in cerebellar granule cells. These results suggest that CaM kinase IIdelta3 isoforms are involved in nuclear Ca2+ signaling in cerebellar granule cells.  相似文献   

15.
The cardiac muscle sarcoplasmic reticulum Ca2+ release channel (ryanodine receptor) is a ligand-gated channel that is activated by micromolar cytoplasmic Ca2+ concentrations and inactivated by millimolar cytoplasmic Ca2+ concentrations. The effects of sarcoplasmic reticulum lumenal Ca2+ on the purified release channel were examined in single channel measurements using the planar lipid bilayer method. In the presence of caffeine and nanomolar cytosolic Ca2+ concentrations, lumenal-to-cytosolic Ca2+ fluxes >/=0.25 pA activated the channel. At the maximally activating cytosolic Ca2+ concentration of 4 microM, lumenal Ca2+ fluxes of 8 pA and greater caused a decline in channel activity. Lumenal Ca2+ fluxes primarily increased channel activity by increasing the duration of mean open times. Addition of the fast Ca2+-complexing buffer 1,2-bis(2-aminophenoxy)ethanetetraacetic acid (BAPTA) to the cytosolic side of the bilayer increased lumenal Ca2+-activated channel activities, suggesting that it lowered Ca2+ concentrations at cytosolic Ca2+-inactivating sites. Regulation of channel activities by lumenal Ca2+ could be also observed in the absence of caffeine and in the presence of 5 mM MgATP. These results suggest that lumenal Ca2+ can regulate cardiac Ca2+ release channel activity by passing through the open channel and binding to the channel's cytosolic Ca2+ activation and inactivation sites.  相似文献   

16.
BACKGROUND: Volatile anesthetics, such as halothane and isoflurane, have been reported to affect the endothelium mediated relaxation of vascular smooth muscle cells. Because the activity of the constitutive nitric oxide synthase in endothelial cells depends on the availability of intracellular Ca2+, there is a definite possibility that the observed inhibitory effect of volatile anesthetics involves an action on the agonist-evoked internal Ca2+ mobilization and/or Ca2+ influx in these cells. Therefore, a study was undertaken to determine how halothane and isoflurane affect the Ca2+ signalling process in vascular endothelial cells. METHODS: The effect of halothane and isoflurane on the Ca2+ response to bradykinin of bovine aortic endothelial (BAE) cells was investigated using the fluorescent Ca2+ indicator fura-2. Halothane or isoflurane was applied either to resting cells or after bradykinin stimulation. The agonist-evoked Ca2+ influx in BAE cells was estimated by measuring either the rate of fura-2 quenching induced by Mn2+ or the increase in cytosolic Ca2+ concentration initiated after readmission of external Ca2+ after a brief exposure of the cells to a Ca(2+)-free external medium. The effects of halothane on cell potential and intracellular Ca2+ concentration were measured in cell-attached patch-clamp experiments in which a calcium-activated K+ channel and an inward rectifying Ca(2+)-independent K+ channel were used as probes to simultaneously monitor the intracellular Ca2+ concentration and the cell transmembrane potential. In addition, combined fura-2 and patch-clamp cell-attached recordings were carried out, to correlate the variations in internal Ca2+ caused by halothane and the activity of the Ca(2+)-dependent K+ channels, which are known in BAE cells to regulate intracellular potential. Finally, a direct action of halothane and isoflurane on the gating properties of the Ca(2+)-activated K+ channel present in these cells was investigated in patch-excised inside-out experiments. RESULTS: The results of the current study indicate that the initial Ca2+ increase in response to bradykinin stimulation is not affected by halothane, but that pulse applications of halothane (0.4-2 mM) or isoflurane (0.5-1 mM) reversibly reduce the sustained cytosolic Ca2+ increase initiated either by bradykinin or by the Ca2+ pump inhibitor thapsigargin. In addition, halothane appeared to dose-dependently inhibit the Ca2+ influx evoked by bradykinin, and to cause, concomitant to a decrease in cytosolic Ca2+ concentration, a depolarization of the cell potential. Halothane failed, however, to affect internal Ca2+ concentration in thapsigargin-treated endothelial cells, which were depolarized using a high K+ external solution. Finally, halothane and isoflurane decreased the open probability of the Ca(2+)-dependent K+ channel present in these cells. CONCLUSIONS: These observations suggest that the effects of halothane and isoflurane on Ca2+ homeostasis in BAE cells reflect, for the most part, a reduction of the thapsigargin- or bradykinin-evoked Ca2+ influx, which would be consequent to a cellular depolarization caused by an inhibition of the Ca(2+)-dependent K+ channel activity initiated after cell stimulation.  相似文献   

17.
We investigated how Ca2+-sensitive transient outward current, Ito(Ca), is activated in rabbit ventricular myocytes in the presence of intracellular Na+ (Na+i) using the whole-cell patch-clamp technique at 36 degreesC. In cells dialysed with Na+-free solutions, the application of nicardipine (5 microM) to block L-type Ca2+ current (ICa) completely inhibited Ito(Ca). In cells dialysed with a [Na+]i>/=5 mM, however, Ito(Ca) could be observed after blockade of ICa, indicating the activity of an ICa-independent component. The amplitude of ICa-independent Ito(Ca) increased with voltage in a [Na+]i-dependent manner. The block of Ca2+ release from the sarcoplasmic reticulum by caffeine, ryanodine or thapsigargin blocked ICa-independent Ito(Ca). In Ca2+-free bath solution Ito(Ca) was completely abolished. The application of 2 mM Ni2+ or the newly synthesized compound KBR7943, a selective blocker of the reverse mode of Na+/Ca2+ exchange, or perfusion with pipette solution containing XIP (10 microM), a selective blocker of the exchanger, blocked ICa-independent Ito(Ca). From these results we conclude that, in the presence of Na+i, Ito(Ca) can be activated via Ca2+-induced Ca2+ release triggered by Na+/Ca2+ exchange operating in the reverse mode after blockade of ICa.  相似文献   

18.
Frog sympathetic ganglion neurons exhibit a novel Ca2+ uptake mechanism, release-activated calcium transport or RACT, which is manifest in both cytosolic and store [Ca2+] signals as greatly accelerated Ca2+ uptake after Ca2+ release from internal stores. RACT is activated by Ca2+ release but not by Ca2+ entry and serves to selectively refill Ca2+ stores after release. RACT lowers cytosolic [Ca2+] with a rate constant about 1.6 times that of the SERCA pump with empty ER. RACT is thapsigargin-insensitive, was eliminated by ryanodine, but was not affected by blocking mitochondrial or plasma membrane Ca2+ transport. A Ca2+ flux model with RACT in the ER membrane reproduced the cytosolic and store [Ca2+] responses to all stimuli.  相似文献   

19.
In genetically occurring non-insulin-dependent diabetes mellitus (NIDDM) model rats (GK rats), the activities of L- and T-type Ca2+ channels in pancreatic beta cells are found to be augmented, by measuring the Ba2+ currents via these channels using whole-cell patch-clamp technique, while the patterns of the current-voltage curves are indistinguishable. The hyper-responsiveness of insulin secretion to nonglucose depolarizing stimuli observed in NIDDM beta cells could be the result, therefore, of increased voltage-dependent Ca2+ channel activity. Perforated patch-clamp recordings reveal that the augmentation of L-type Ca2+ channel activity by glucose is markedly less pronounced in GK beta cells than in control beta cells, while glucose-induced augmentation of T-type Ca2+ channel activity is observed neither in the control nor in the GK beta cells. This lack of glucose-induced augmentation of L-type Ca2+ channel activity in GK beta cells might be causatively related to the selective impairment of glucose-induced insulin secretion in NIDDM beta cells, in conjunction with an insufficient plasma membrane depolarization due to impaired closure of the ATP-sensitive K+ channels caused by the disturbed intracellular glucose metabolism in NIDDM beta cells.  相似文献   

20.
The three subtypes of inositol trisphosphate (InsP3) receptor expressed in mammalian cells are each capable of forming intracellular Ca2+ channels that are regulated by both InsP3 and cytosolic Ca2+. The InsP3 receptors of many, though perhaps not all, tissues are biphasically regulated by cytosolic Ca2+: a rapid stimulation of the receptors by modest increases in Ca2+ concentration is followed by a slower inhibition at higher Ca2+ concentrations. Despite the widespread occurrence of this form of regulation and the belief that it is an important element of the mechanisms responsible for the complex Ca2+ signals evoked by physiological stimuli, the underlying mechanisms are not understood. Both accessory proteins and Ca2+-binding sites on InsP3 receptors themselves have been proposed to mediate the effects of cytosolic Ca2+ on InsP3 receptor function, but the evidence is equivocal. The effects of cytosolic Ca2+ on InsP3 binding and channel opening, and the possible means whereby the effects are mediated are discussed in this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号