首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
For a blunt crack the j-integral is path dependent on contours which are very close to the crack tip even for elastic material. Using the incremental J-integral theory we introduce a new parameter Jt, characterizing the behavior of a crack tip and prove that the J-integral is almost path independent on contours whose radii are greater than several COD if σij,1Δεij — εijΔσij = 0 in plastic regions for elasto-plastic material.  相似文献   

2.
A comprehensive study is made of the Det.(σij)-criterion that involves the weighted difference of the dilatational and distortional component of the strain energy density function. Certain inconsistencies and contradictions when applied to the Mode I crack extension problem are pointed out. Clear distinctions are also made on the meaning of the core region in contrast to the loci of yield initiation and the initial curve of the caustics. Examples are provided to illustrate how overspecification in the initial assumption could lead to obscure results.  相似文献   

3.
Sih's fracture criterion based on strain energy density, S, for mixed mode crack extension under static loading is extended to dynamic mixed mode, KI and KII, crack propagation. Influence of the second order term, σox, which represents the non-singular constant stress acting parallel to the direction of crack propagation, on the S distribution surrounding the crack tip, is demonstrated. Numerical studies show that positive σox enhances the fracture angle and negative σoxreduces the fracture angle irrespective of the sign of KII/KI, when S is measured at a critical distance rc from the crack tip. This fracture criterion is verified by the crack curving results of dynamic photoelastic fracture specimens. Omission of σox term leads to predicted fracture angles which are at variance with experimental data.  相似文献   

4.
The T-criterion of fracture is based on the principle that crack propagates when the maximum value of the distribution of the dilatational component of strain energy density Tv, evaluated along contour lines of constant distortional energy density TD around the crack tip, attains a limiting value Tvo The angle of this maximum defines also the direction of initiation of crack propagation. Then, the study of the distribution of Tv around the crack tip presents a special interest for understanding mechanisms of fracture.

In this investigation an exhaustive theoretical analysis of the distribution of tv-component around the tip of crack under in-plane modes of loading was undertaken. The Tv-distribution was evaluated along the elastic-plastic boundary, developed around the crack tip for impending plasticity, according to the Mises yield condition (TD = TD0 = const.). The mode of loading of the cracked plate was assumed biaxial with different biaxiality ratios k and a two-term approximation for the respective complex stress function was considered, according to the studies of Liebowitz et al.[1], instead of only the singular term considered up-to-now.

It was found that the Tv-distribution along the Mises initial elastic-plastic boundary presents always a maximum in front of the crack tip, whose position and magnitude depend on the biaxiality factor k and the angle of loading β. The position and the magnitude of this maximum for the two-term approximation of φ(z) showed differences in some regions with the respective values for the singular solution.  相似文献   


5.
A simple procedure for the accurate determination of stress intensity factors KI, KII by the conventional finite element method is proposed. The first step of the method is to calculate the stress σ2 of the plate without a crack. The second step is to calculate the stress σtip, of the plate with the crack. The value of (σtip−σg) at the crack tip element is regarded to have the intimate relation with KI, KII KI, and KII are determined from the value of (σtip−σg) and a standard solution. It is shown that the results obtained for many problems by the proposed method are in excellent coincidence with the analytical solutions. The error is below 1–3% for the most cases.  相似文献   

6.
An efficient finite element method is presented for calculating the stress intensity factors (KI and KII) and the weight functions for mixed-mode cracks with one virtual crack extension. The computational efficiency is enhanced through the use of singular elements and the application of colinear virtual crack extension (VCE) technique to symmetric mesh in cracktip neighborhood. This symmetric mesh in crack-tip vicinity permits the analytical separation of strain energy release rate into GI for Mode I and GII for Mode II for the mixed fracture problems with the colinear virtual crack extension.

Rice's displacement derivative representation of weight function vector for symmetric crack has been extended to the mixed fracture mode at nodal location (xi,yi) with crack length (a) and inclination angle (β) as hI(II)(xi, yi, a, β) = (H/2KI(II)(∂UI(II)(xi, yi, a, β/∂a).

This equation permits explicit determination of weight functions for the entire structure of a given asymmetric crack geometry with colinear VCE technique. The explicit weight functions for mixed fracture mode depend strongly on the constraint conditions. The method of obtaining the required stress intensity factors of a given asymmetric crack geometry, from the weight function concept under the selected constraint conditions, which are different from constraint conditions used in the available weight functions for the same crack geometry, is also presented in this paper. This is accomplished by combining the predetermined explicit weight functions with the self-equilibrium forces at their application locations. These self-equilibrium forces include both the applied surface tractions and the reaction forces induced from the constraint conditions.  相似文献   


7.
Biaxial compression tests have been performed on assemblies of oval cross-sectional rods, in an effort to evaluate the effects of interparticle friction, particle shape, and initial fabric on the overall strength of granular materials. The variation in the spatial arrangement of the particles (fabric) and particle rolling and sliding are monitored by taking photoelastic pictures at various stages during the course of deformation. Based on this, the following conclusions are obtained. (1) Particle rolling appears to be a major microscopic deformation mechanism, especially when interparticle friction is large. (2) There are relatively few contacts at which relative sliding is dominant, and this seems to be true even when the assembly reaches the overall failure state; this observation is in contradiction to the common assumption that particle sliding is the major microscopic deformation mode. (3) During the course of deformation and up to the peak stress, new contacts are continually formed in such a manner that the contact unit normals tend to concentrate more in a direction parallel to the maximum principal compression. This concentration of unit normals seems to be closely related to the formation of new column-like load paths which carry the increasing axial stress under constant lateral force. After the peak stress, such a column-like microstructure disappears and considerable rearrangement of the load paths takes place, leading to a more diffused (homogeneous) microstructure in the critical state. (4) If a fabric tensor Fij, i, J = 1,2,3, is defined to be proportional to the volume average of the quantity mimj, where mi are the rectangular Cartesian components of a unit vector along a vector that connects the centroids of two typical contacting granules, then it appears that the overall stress with components σij tends to become coaxial with the fabric tensor Fij, as the overall deformation continues. For two-dimensional granules the result σij = OFij + βOFjkFkj (k summed) obtained by Mebrabadi, Nemat-Nasser and Oda (1980) by microchemical modeling is confirmed experimentally; O and βO are material parameters.  相似文献   

8.
Fatigue crack initiation and growth characteristics under mixed mode loading have been investigated on aluminum alloys 2017-T3 and 7075-T6, using a newly developed apparatus for mixed mode loading tests. In 2017-T3, the fatigue crack initiation and growth characteristics from a precrack under mixed mode loading are divided into three regions—shear mode growth, tensile mode growth and no growth—on the ΔKIKII plane. The shear mode growth is observed in the region expressed approximately by ΔKII > 3MPa√m and ΔKIIKI > 1.6. In 7075-T6, the condition of shear mode crack initiation is expressed by ΔKII > 8 MPa√m and ΔKIIKI > 1.6, and continuous crack growth in shear mode is observed only in the case of ΔKIKII, 0. The threshold condition of fatigue crack growth in tensile mode is described by the maximum tensile stress criterion, which is given by Δσθmax √2πr 1.6MPa√m, in both aluminum alloys. The direction of shear mode crack growth approaches the plane in which KI decreases and KII increases towards the maximum with crack growth. da/dNKII relations of the curved cracks growing in shear mode under mixed mode loading agree well with the da/dNKII relation of a straight crack under pure mode II loading.  相似文献   

9.
For both the maximum stress criterion and strain-energy-density-factor (S) theory, fracture angle (the initial angle of crack growth) − θo is predicted by using opening and sliding mate stress intensity factors, k1 and k2. These theoretical predictions are consistent with experimental fracture angles.

For the S theory, the crack spreads in the negative θo-direction in a plane for which S is a minimum, Smin. This quantity was obtained analytically. The experimental data of the critical S (Scr) on plexiglass fracture specimens remains essentially constant.  相似文献   


10.
The kinetics theory of thermally activated time dependent crack propagation is extended to describe the crack size distribution in non-steady state. The distribution is represented by a series of n differential equations, each expressing the rate of crack tip concentration change over the system of n consecutive energy barriers. The general solution for the set of homogeneous linear first order differential equations developed in this report is of the form ρi = Σjci,je−λjt + Ci, where ρi is the crack tip concentration in the ith valley. The theory takes into consideration the discrete character of solids in contrast with the usual continuum models of fracture studies. The analysis is readily applicable to Regions I and II of stress corrosion cracking.  相似文献   

11.
In this paper, the brittle fracture initiation characteristics under general combination of the opening mode (Mode I), sliding mode (Mode II) and tearing mode (Mode III) were investigated both theoretically and experimentally.

First, the perfectly brittle fracture tests were conducted on specimens of PMMA (Polymethylmethacrylate) for all possible combinations of the fracture modes including respective pure modes. The experimental fracture strengths were compared with those predicted by the fracture criteria which are represented in terms of: (1) maximum tangential stress, [σgq]max, extended to general combined modes, (2) maximum energy release rate at the propagation of a small kinked crack, [Gk(γ)]max, and (3) newly derived maximum energy release rate at the initiation of a small kinked crack, [G(γ)]max. It was found that the [Gk(γ)]max or [G(γ)]max criterion was very effective to predict both the direction of initial crack propagation and the fracture strength. These energy release rates are expressed in closed forms, and the interaction curves of the brittle fracture strength under arbitrary combinations of Modes I, II and III were derived.

Next, for fracture accompanied by plastic deformation, tests were carried out on specimens of mild steel (SM 41) imposing bi-axial tensile loads at various low temperatures. Then, brittle fracture with plastic deformation occurs under a combination of Modes I and II. In the case of brittle fracture with small scale yielding, the [G(γ)]max criterion predicts well the direction of initial crack propagation but estimates only lower fracture strength than the experimental one. In the cases of brittle fracture with large scale yielding and under general yielding, it was found from the fracture tests that the direction of initial crack propagation was nearly normal to the resultant vector of the crack opening displacements in the opening and sliding modes at the notch tip. To this type of fracture, the modified COD criterion predicts well the direction of initial crack propagation, but lower fracture strength.

When brittle fracture occurs under the influence of plastic deformation, in such cases as the last three mentioned above, the actual fracture strength is higher than what the most reliable criterion predicts and it increases as deformation in Mode II becomes larger.  相似文献   


12.
“Linear elastic” fracture mechanics is based on the “plane strain” condition which means dεzz = 0. Really stress states can occur in structures or components where dεzz > 0. Two examples are discussed. Using the v. Mises criterion and the Sneddon equations the influence of an external stress σezz acting parallel to the crack front on the plastic zone size is calculated and demonstrated by examples.  相似文献   

13.
The flow and fracture stresses, σyg and σfg (δ = crack tip displacement), of sharply notched bending specimens of a structural steel U St 37-1 are measured in the temperature range from full scale to small scale yielding. The best adaption of the experimental results for σfg is obtained by a curve which exhibits an intermediate transition, i.e. which follows in a temperature range between an upper, TtM1 and a lower, Ttl1, transition temperature to the curve σyg(T) for the flow stress with a constant δ = δ1. This transition corresponds to that of the slip to the twin nucleated fracture. Two analyses [3,5] according to the local fracture stress, σf*, concept show that the amount and the temperature dependence of σf* are somewhat different for both methods, but that both exhibit an increase of σf* in the transition range. It is concluded that each transition in the nucleation mode of the fracture is connected with such a transition in the fracture stress. It may, however, become indistinct or even be covered by the scatter of the experimental points.  相似文献   

14.
The delayed retardation phenomena of fatigue crack growth following a single application of tensile overload were investigated under the baseline loading with the stress ratio, R = σminmax, ranging from −1 to 0.5 for A553 steel and A5083 aluminium alloy. Two different overload cycles were applied; the one is the case that the ratio of peak stress range to baseline stress range, r = Δσ2/Δσ1, is equal to two and the other is the case that the ratio of maximum peak stress to maximum baseline stress, σ2max1max, is equal to two. The retardation took place stronger in aluminium than in steel. Under the condition of r = 2 the normalized number of cycles, ND/NC, (ND: the number of cycles during retardation, NC: the number of cycles required for propagation through the overload-affected-zone size) decreased slightly as the R ratio increased from −1 to 0.5, while under the condition of σ2max1max = 2 the ND/NC-values increased drastically as the R ratio increased from −1 to 0 (or the overload ratio, r, increased from 1.5 to 2) in both the materials. These retardation behaviors were expressed theoretically according to the model proposed by Matsuoka and Tanaka [1, 3] by using four parameters: the overload ratio, r, the exponent in Paris equation, m, the overload-affected-zone size, ωD, and the distance at the inflection point, ωB.  相似文献   

15.
The mixed mode I/II fracture behaviour at room temperature of HY130 steel tempered at 350°C has been investigated using edge-cracked bend bar specimens loaded in anti-symmetric and symmetric four point bend configurations. In all cases fracture occurred by a localized shear decohesion mechanism that could not be characterized by the stress intensity factors, KI and KII, but for which the crack tip displacements, δI, and δII, appear to provide a first level of characterization. The results suggest that fracture is described by a maximum shear criterion, and this is consistent with the present understanding of fibrous fracture micro-mechanisms in the material.  相似文献   

16.
A fracture criterion for three-dimensional crack problems   总被引:5,自引:0,他引:5  
A criterion for predicting the growth of three-dimensional cracks is developed on the basis of the strain energy density concept which has been used successfully for treating two-dimensional crack problems. Fracture is assumed to initiate from the nearest neighbor element located by a set of spherical coordinates (r, θ, φ) attached to the crack border. The new fracture surface is described by a locus of these elements whose locations correspond to the strain energy function, dW/dV, being a minimum. The function dW/dV is found to be singular of the type 1/r and is of quadratic form in the three stress intensity factors k1, k2 and k3 expressed through the strain energy density factor S. It is postulated that unstable crack propagation initiates from a region where S reaches a critical value Scr = r0(dW/dV)cr. The locations of failure lying on the fracture surface is determined by holding (dW/dV)cr = Smin/r0 constant. The quantity Smin stands for the value of S minimized with respect to θ and φ and r0 is a radial distance measured from the crack border.

An example of failure prediction for an embedded elliptical crack subjected to both normal and shear loads is presented. According to the S-criterion, fracture initiation takes place at the ends of the minor axis. An unexpected result is that for a narrow elliptical crack and Poisson's ratio of 1/3 the lowest failure load occurs when the uniaxial tensile load makes an angle of approximately 60° with the crack surface and is in the plane of the major axis. This is in contrast to the expectation that the lowest critical load occurs when the uniaxial tension is perpendicular to the crack surface. In the limit as the elliptical crack becomes increasingly narrower, the result reduces to the two dimensional line crack case of Mode I and III loading. The S-criterion is also applied to the failure prediction of three dimensional cracks under compressive loads.  相似文献   


17.
Failure due to fatigue consists of such macroscopic events as crack initiation and propagation. Microscopic events including microcrack nucleation, microcrack growth and coalescence of some of the microcracks are also important in that such crack interactions can be considered to contribute to the development of a critical defect, i.e. a defect which can self propagate and lead to failure. Since crack initiation is important at high cycles, this paper considers a microcrack and computes its growth to advance a high cycle stress-life (S-Nf) formulation for metals and alloys based on crack initiation. In addition to a material's Burgers' vector and grain size, an indirect effort is also made to include the role of its propensity to cracking through a ratio SI)/Sf), where SI) and Sf) simply represent steady state crack spacings at stress amplitudes σI and σf (endurance limit), respectively. Conceptually, a decrease of this ratio suggests an increased tendency for cracking and vice versa. As shown in the text, the model predicts that the crack initiation period varies increasingly with this ratio, and the value of the steady state crack spacing ratio is in and of itself quite sufficient to model the experimental stress-life data in instances where life is controlled by crack initiation period and not the stage II crack propagation. Because of this limitation, extreme care must thus be taken with regard to its application.  相似文献   

18.
The classical problem of uniform heat-flow disturbed by an insulated penny-shaped crack is solved in the context of micropolar elasticity. The mode II stress intensity factor, KII is found to depend on two new non-dimensional parameters N and τ − N is a measure of the coupling of the displacement field with the microstructure or the medium (0 N √2) and τ is the ratio of a material characteristic length to the crack radius. KII remains higher than its classical value when N > 0, τ > 0 and attains the classical value as N and τ vanish. A closed-form expression to KII is obtained in the physically important limiting case of τ → 0 with N fixed. In this limit the relative increment in KII, over its classical value, is found to be (1 − v')N2 where v' is the micropolar Poisson's ratio.  相似文献   

19.
D. F. Diao  Y. Sawaki 《Thin solid films》1995,270(1-2):362-366
A typical buckling phenomenon of the coating on the wear groove caused by the residual compressed stress was analyzed by the interface fracture mechanics and the buckling theory. It has been found that there is a critical thickness of coating on the wear groove for the buckling. The critical thickness can be calculated by tb/cd = [12(1 − v2fR2Ef]1/2 (here tb is the coating thickness, cd the length of the interfacial crack, vf the Poisson's ratio of the coating, σR the residual compressed stress in the coating, and Ef the elastic modulus of the coating).  相似文献   

20.
Stress corrosion crack growth rates are measured at sveral stress intensity levels for low-tempered 4340 steel in 0.1N H2SO4 solution. The characteristics of the growth rates are divided into three regions of stress intensity factors: Region I near K1SCC; Region III near unstable fracture toughness, K1SC; and Region II, which lies between the two. K1SCC is the value of K at which no crack growth can be detected after 240 hr.

In order to explain these experimental results, the crack initiation analysis reported in a previous paper is extended to the growth rates. A detached crack initiates and grows at the tip of an already existing crack. When the detached crack reaches the tip of the main crack, the process repeats as a new existing crack.

A relationship between crack growth rate, v, and stress intensity factor, K, is obtained as a function of b/a and a = b + d, where b is the distance from the tip of the main crack to the detached crack, and d is the ydrogen atom saturated domain.

The experimental data are in good agreement with the theoretical values in Region II when a = 0.02 mm, b/a = 0.8, c1/c0 = 2.8 for 200°C tempered specimens and a = 0.015 mm, b/a = 0.7, c1/c0 = 3.0, ρb = 0.055 mm for 400°C tempered specimens, where ρb is a fictitious notch radius. The plateau part in Region II for 400°C tempered specimens is also successfully explained by the present theory. For Region III, the value of b/a will be almost equal to 1 because v → ∞ for b/a → 1. On the other hand, for Region I, b/a will be zero, since the value of v becomes negligibly small and no crack growth is observable.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号