首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maintenance and regulation of intracellular pH (pHi) was studied in wild-type Ehrlich ascites tumor cells (EHR2) and five progressively daunorubicin-resistant, P-glycoprotein (P-gp)-expressing strains, the maximally resistant of which is EHR2/1.3. Steady-state pHi was similar in cells expressing different amounts of P-gp, in the absence and presence of glucose. In EHR2/1.3, glucose-induced acidification was reduced, and proton efflux was increased, compared to the wild-type EHR2, differences which were not caused by increased activity of a Na+/H+ exchanger in the resistant cells. Comparing all six cell lines, no evidence was found for a correlation between the amount of P-gp in the membrane and pHi regulation, which was also unaffected by P-gp modulators. However, a correlation was seen between relative resistance/daunorubicin accumulation and acid extrusion rate, which is likely to be due to aspects of development of drug resistance other than P-gp.  相似文献   

2.
In mice, the mdr1a and mdr1b genes encode drug-transporting proteins that can cause multidrug resistance in tumor cells by lowering intracellular drug levels. These P-glycoproteins are also found in various normal tissues such as the intestine. Because mdr1b P-glycoprotein is not detectable in the intestine, mice with a homozygously disrupted mdr1a gene [mdr1a(-/-) mice] do not contain functional P-glycoprotein in this organ. We have used these mdr1a(-/-) mice to study the effect of gut P-glycoprotein on the pharmacokinetics of paclitaxel. The area under the plasma concentration-time curves was 2- and 6-fold higher in mdr1a(-/-) mice than in wild-type (wt) mice after i.v. and oral drug administration, respectively. Consequently, the oral bioavailability in mice receiving 10 mg paclitaxel per kg body weight increased from only 11% in wt mice to 35% in mdr1a(-/-) mice. The cumulative fecal excretion (0-96 hr) was markedly reduced from 40% (after i.v. administration) and 87% (after oral administration) of the administered dose in wt mice to below 3% in mdr1a(-/-) mice. Biliary excretion was not significantly different in wt and mdr1a(-/-) mice. Interestingly, after i.v. drug administration of paclitaxel (10 mg/kg) to mice with a cannulated gall bladder, 11% of the dose was recovered within 90 min in the intestinal contents of wt mice vs. <3% in mdr1a(-/-) mice. We conclude that P-glycoprotein limits the oral uptake of paclitaxel and mediates direct excretion of the drug from the systemic circulation into the intestinal lumen.  相似文献   

3.
4.
Multidrug resistance gene (mdrl) expression is associated with a poor prognosis in acute myelocytic leukaemia (AML). Whether expression of the recently described multidrug resistance-associated gene (mrp) has any prognostic importance in AML is still unclear. The aim of the present study was to investigate the functional role of the mdr1 and mrp mRNA levels in peripheral leukaemic cell populations from patients with AML. Peripheral leukaemic cells from 10 patients with AML were incubated with daunorubicin (DNR). Cellular DNR content was analysed with a fluorescence-activated cell sorter (FACS). From each cell population the 20-25% cells with the lowest and highest DNR content were sorted out, and mdr1 and mrp RNA were quantified in these subpopulations with competitive polymerase chain reaction. The ratio between the mean DNR content in the cell populations with high and low DNR content varied between 1.9 and 6.6. the cell fraction with low DNR content had higher (3.8-40 times)mdr1 mRNA levels in 10/10 patients and higher (1.4-26 times) mrp mRNA levels in 8/10, as compared to the cell fraction with high DNR accumulation. In conclusion, mdr1 and mrp mRNA expressions are heterogenous in leukaemic cell populations from patients with AML. The mdr1 expression, and to some extent mrp expression, is inversely correlated to DNR accumulation in vitro.  相似文献   

5.
OBJECTIVE: Activated T lymphocytes are involved in the pathogenesis of scleroderma (systemic sclerosis, SSc); such cells rapidly divide in vivo and are thus theoretically subject to random mutation more frequently than resting cells. To study whether SSc is associated with rapidly expanding T cell clones the frequency was determined of in vivo mutated T cells (MF) at the hypoxanthine guanine phosphoribosyl transferase (hprt) gene in the peripheral blood from patients with SSc. Specific clinical or serological associations were also investigated. METHODS: Peripheral blood lymphocytes from 16 healthy individuals and 20 patients with SSc were cultured using an hprt clonal assay; mutated and wild T cell clones were established to assess individual values of T cell MF. T cell clones were further expanded in vitro and their phenotype was determined by standard immunofluorescence technique. Enzyme-linked immunosorbent assays were used for simultaneous measurements of plasma levels of soluble Interleukin-2 receptors (s-IL-2R) and Intercellular adhesion molecule-1 (s-ICAM-1). RESULT: Mean (SD) value of T cell MF in patients with SSc was 2.5-fold higher than the normal mean (SD) value [10.6 (6.6) x 10(-6) v [4.4 (2.8) x 10(-6), p = 0.0007]. Eleven of 20 patients with SSc (55%) had T cell MF values greater than two SD above the normal mean value. The majority (84%) of mutated T cells had a helper/inducer, memory phenotype while 12% were cytotoxic/suppressor T cells. There was no association between T cell MF and the extent of skin involvement or the duration of Raynaud's phenomenon. High individual T cell MF values were not related to a possible concurrent immune overactivity as assessed by plasma levels of s-IL-2R and s-ICAM-1. Patients with long standing skin disease, however, had almost double T cell MF values than patients with early skin disease [(13.6 (7.4)) x 10(-6) v (7.5 (4.3)) x 10(-6), p = 0.03], suggesting that increased T cell MF in SSc may reflect an ongoing process of chronic in vivo T cell proliferation and/or prolonged survival. CONCLUSION: Increased in vivo T cell mutation in patients with SSc suggests that excessive division and/or survival of T cell clones contribute to the pathology in SSc; this approach can be used in further investigations to identify the stimulus that is triggering T cell activation in this disease.  相似文献   

6.
We investigated the antitumour effects of 1-(2,6-difluorophenyl)-1H,3H-thiazolo [3,4-a]benzimidazole (TBZ) a new anti-HIV-1 agent, on human promyelocytic HL60 leukaemia, both a parental and a multidrug resistant form (HL60R). HL60R overexpresses P-glycoprotein and, like HL60, lacks p53 protein expression. HL60 and HL60R show similar levels of Bcl-2 protein. In contrast to the conventional chemotherapeutic agents daunorubicin, etoposide and mitoxantrone, TBZ caused equal or even greater cytotoxicity in HL60R than in HL60, and this result was associated with a more marked induction of apoptosis in the drug resistant cells. The antitumour activity of TBZ occurred in the range of concentrations higher than those required to exert antiviral activity. TBZ seems to act in the presence of P-glycoprotein and Bcl-2 and in the absence of p53 and is able to circumvent the mechanisms of drug resistance and anti-apoptosis present in HL60R cells.  相似文献   

7.
8.
Overexpression of P-glycoprotein in tumor cells can represent a severe drawback for cancer chemotherapy. P-glycoprotein acts as an efflux transporter for a variety of chemotherapeutic agents. It is encoded by multidrug resistance (mdr) genes of the subfamily 1 in humans (MDR1) and rodents (mdr1a and 1b). Because mdr1 gene expression is inducible in cultured rat hepatocytes and in rat liver with chemical carcinogens such as 2-acetylaminofluorene or aflatoxin B1, which form DNA-binding electrophiles during their metabolism, we investigated whether the DNA-damaging chemotherapeutic drug mitoxantrone may induce multidrug resistance in rodents and in hepatocytes in primary culture. In H4IIE rat hepatoma cells stably transfected with a luciferase construct containing the rat mdr1b promoter, mitoxantrone caused a concentration-dependent increase in promoter activity. Mdr1 gene expression in cultured rat hepatocytes was enhanced at mitoxantrone concentrations greater than or equal to 0.1 microM and in mouse hepatocytes at 5 microM. In hepatocytes from both species, a correlation was found between mdr1 induction and the inhibition of protein synthesis. In vivo, mitoxantrone was a very powerful inducer of mdr1 gene expression in rat liver and small intestine. In rat kidney, induction of mRNA was lower, and a marginal effect was seen in lung. In contrast with rats, no significant induction of mdr1 gene expression was obtained in mouse liver. Probably as a consequence of inhibition of protein synthesis, mitoxantrone did not lead to a pronounced elevation of P-glycoprotein levels in rat liver and kidney.  相似文献   

9.
Resistance to some (lipophilic) antifolates has been associated with P-glycoprotein (P-gp)-mediated multidrug resistance (MDR). A possible relationship with non-P-gp MDR has not been established. We studied resistance to antifolates in SW-1573 human lung carcinoma cells, a P-gp overexpressing variant SW-1573/2R160 and a multidrug resistance protein (MRP) overexpressing variant SW-1573/2R120. In this study, thymidylate synthase (TS) inhibitors with different properties concerning the efficiency of membrane transport and the efficiency of polyglutamylation were tested for cross-resistance in SW-1573/2R120 and SW-1573/2R160 cells. Growth inhibition patterns in this cell line panel were measured by the Sulforhodamine B (SRB) assay. Resistance factors for TS inhibitors were: 2.4 and 0.4 for 5-fluorouracil (5FU), 18.8 and 8.8 for ZD1694, 17 and 0.7 for AG337, and 40 and 8.3 for BW1843U89 in SW-1573/2R160 and SW-1573/2R120, respectively. This study showed changes in the TS enzyme kinetics during the induction of doxorubicin resistance in both SW-1573 variants, resulting in 2-fold lower Km values for 2'-deoxyuridine-5'-monophosphate (dUMP) in both resistant variants compared to the parental cell line. TS activity, TS protein induction and TS mRNA expression all had 2-fold increased in the SW-1573/2R120 compared to the SW-1573/2R160. 3H-MTX influx was 2-fold lower in SW-1573/2R160 cells compared to SW-1573/2R120 and SW-1573 cells. In the SW-1573/2R160 cell line, an aberrant intracellular trafficking towards the target TS was observed, compared to SW-1573/2R120 and SW-1573 cells as measured by the TS in situ assay. The rate of TS inhibition by the TS inhibitors used in this study was similar in all cell lines. In conclusion, collateral sensitivity to 5FU and the lipophilic AG337 and cross-resistance to other antifolates were observed in non-P-gp MDR SW-1573/2R120 cells, as well as resistance to all antifolates in P-gp SW-1573/2R160 cells. The mechanism of resistance in SW-1573/2R160 cells possibly involves reduced influx and changes in intracellular trafficking routes. For the SW-1573/2R120 cell line, several changes related to the TS enzyme possibly play a role in the observed cross-resistance and collateral sensitivity pattern.  相似文献   

10.
11.
12.
The estrogenic activity of dieldrin, toxaphene, and an equimolar mixture of both compounds (dieldrin/toxaphene) was investigated in the 21-day-old B6C3F1 mouse uterus, MCF-7 human breast cancer cells, and in yeast-based reporter gene assays. Treatment of the animals with 17beta-estradiol (E2) (0.0053 kg/day x3) resulted in a 3.1-, 4.8-, and 7.8-fold increase in uterine wet weight, peroxidase activity, and progesterone receptor binding, respectively. In contrast, treatment with 2.5, 15 and 60 micromol/kg (x3) doses of toxaphene, dieldrin, or dieldrin/toxaphene (equimolar) did not significantly induce a dose-dependent increase in any of the E2-induced responses. The organochlorine pesticides alone and the binary mixture did not bind to the mouse uterine estrogen receptor (ER) in a competitive binding assay using [3H]E2 as the radioligand. In parallel studies, estrogenic activities were determined in MCF-7 cells by using a cell proliferation assay and by determining induction of chloramphenicol acetyl transferase (CAT) activity in MCF-7 cells transiently transfected with plasmids containing estrogen-responsive 5'-promoter regions from the rat creatine kinase B and human cathepsin D genes. E2 caused a 24-fold increase in CAT activity in MCF-7 cells transiently transfected with creatine kinase B and a 3.8-fold increase in cells transiently transfected with the human cathepsin D construct. Treatment of MCF-7 cells with dieldrin, toxaphene, or an equimolar mixture of dieldrin plus toxaphene (10(-8)-10(-5) M) did not significantly induce cell proliferation or CAT activity in the transient transfection experiment with both plasmids. The relative competitive binding of the organochlorine pesticides was determined by incubating MCF-7 cells with 10(-9) M [3H]E2 in the presence or absence of 2 x 10(-7) M unlabeled E2 (to determine nonspecific binding), toxaphene (10(-5) M), dieldrin (10(-5) M), and equimolar concentrations of the dieldrin plus toxaphene mixture (10(-5) M). The binding observed for [3H]E2 in the whole cell extracts was displaced by unlabeled E2, whereas the organochlorine pesticides and binary mixture exhibited minimal to nondetectable competitive binding activity. E2 caused a 5000-fold induction of beta-galactosidase (beta-gal) activity in yeast transformed with the human ER and a double estrogen responsive element upstream of the beta-gal reporter gene. Treatment with 10(-6)-10(-4) M chlordane, dieldrin, toxaphene, or an equimolar mixture of dieldrin/toxaphene did not induce activity, whereas 10(-4) M endosulfan caused a 2000-fold increase in beta-gal activity. Diethylstilbestrol caused a 20-fold increase in activity in yeast transformed with the mouse ER and a single estrogen responsive element upstream of the beta-gal reporter gene. Dieldrin, chlordane, toxaphene, and endosulfan induced a 1.5- to 4-fold increase in activity at a concentration of 2.5 x 10(-5) M. Synergistic transactivation was not observed for any equimolar binary mixture of the pesticides at concentrations of either 2.5 x 10(-5) M or 2.5 x 10(-4) M. The results of this study demonstrate that for several estrogen-responsive assays in the mouse uterus, MCF-7 human breast cancer cells, and yeast-based reporter gene assays, the activities of both dieldrin and toxaphene were minimal, and no synergistic interactions were observed with a binary mixture of the two compounds.  相似文献   

13.
In the mouse, both the mdr1a and the mdr1b gene encode drug-transporting P-glycoproteins. The mdr1a P-glycoprotein is expressed in epithelial cells of, among others, the liver and the intestine. Furthermore, the mdr1b gene product is found in the liver but is not detectable in the intestine. To establish the potential involvement of P-glycoprotein in the elimination of cationic amphiphilic drugs from the body, we investigated biliary, intestinal, and urinary excretion in mice with a homozygous disruption of the mdr1a gene (mdr1a(-/-) mice). These mice are fully viable under laboratory conditions and have normal bile flow. Cumulative biliary excretion (expressed as percent of the intravenously administered dose excreted over a 1-hour period) of several cationic compounds was decreased as follows in mdr1a(-/-) mice compared with the wild-type animals: tri-n-butylmethylammonium (TBuMA), 0.7% versus 2.1%; azidoprocainamide methoiodide (APM), 3.8% versus 7.6%; and vecuronium, 22.7% versus 41.3%. The luminal secretion of both TBuMA and APM in the small intestine was profoundly decreased, respectively 4.6-fold (1.8% vs. 8.2% in the wild-type) and 7.9-fold (1.6% vs. 10.3% in the wild-type) in mdr1a(-/-) mice. Thus mdr1a P-glycoprotein contributes substantially to the removal of a wide variety of cationic agents from the body through intestinal and hepatobiliary secretion, but it evidently acts in concert with other transport system(s). These processes probably provide a protective mechanism limiting the overall rate of absorption as well as the bioavailability of potentially toxic organic amines.  相似文献   

14.
Multidrug resistance is functionally associated with the expression of a plasma membrane energy-dependent drug efflux pump termed P-glycoprotein, the product of the mdr1 gene. Transfection of P-glycoprotein-expressing doxorubicin-resistant MCF-7 cells with an expression vector containing the cDNA for protein kinase C alpha in the antisense orientation reduces protein kinase C alpha levels and decreases total protein kinase C activity by 75%. This is accompanied by reduced phosphorylation of P-glycoprotein, a 2-fold increase in drug retention, and a 3-fold increase in doxorubicin cytotoxicity. These results provide further evidence that protein kinase C alpha can positively regulate multidrug resistance in MCF-7 cells through posttranslational phosphorylation of P-glycoprotein.  相似文献   

15.
PURPOSE: The effect of P-glycoprotein (Pgp) on brain distribution using mdr1a (-/-) mice was investigated. METHODS: Fluorescein (Flu) and FD-4 were used to check whether blood-brain barrier (BBB) integrity was maintained in mdr1a (-/-) mice. The Pgp substrate rhodamine-123 (R123) was infused and total brain, blood and brain microdialysate concentrations in mdr1a (-/-) mice and wild-type mice were compared. RESULTS: Maintenance of BBB integrity was indicated by equal total brain/blood ratios of Flu and FD-4 in both mice types. R123 concentrations in brain after i.v. infusion were about 4-fold higher in mdr1a (-/-) than in wild-type mice (P < 0.05), without changes in blood levels. After microdialysis experiments the same results were found, excluding artifacts in the interpretation of Pgp functionality by the use of this technique. However the 4-fold ratio in brain was not reflected in corresponding microdialysates. No local differences of R123 in the brain were found. By the no-net-flux method in vivo recovery appeared to 4.6-fold lower in mdrla (-/-) mice compared with wild-type mice. CONCLUSIONS: Pgp plays an important role in R123 distribution into the brain. Using intracerebral microdialysis, changes in in vivo recovery by the absence or inhibition of Pgp (or active efflux in general) need to be considered carefully.  相似文献   

16.
P-glycoprotein, the multidrug resistance transporter, is phosphorylated in vivo and the major phosphorylation domain has been identified as the linker region (amino acids 629-686). The linker region is a highly charged segment of the transporter in which the negative and positive amino acid side chains are spatially segregated. Both of these charged domains contain several consensus phosphorylation sites for protein kinases. Three of the consensus phosphorylation sites for basic-directed kinases in murine mdr1b P-glycoprotein are utilized in vivo and have been identified as serines 665, 669, and 681. Mutagenesis of all the consensus basic-directed kinase phosphorylation sites in the linker region of human MDR1 P-glycoprotein did not alter the ability of the mutated transporter to confer the multidrug resistance phenotype in stably transfected cell lines. These studies would suggest that phosphorylation/dephosphorylation within the basic domain of the linker region is not directly involved in regulation of drug transporter activity. We now report that the linker region of mdr1b P-glycoprotein is also phosphorylated in vivo within the acidic domain (amino acids 631-658). These sites have been mapped using casein kinase II, a prototypic acidic-directed kinase, and a recombinant mdr1b linker region peptide (amino acids 621-687). Electrospray mass spectrometry demonstrated that casein kinase II could introduce up to five phosphates into the recombinant peptide. Two-dimensional phosphopeptide mapping indicated that all the phosphates were contained in a tryptic peptide consisting of amino acids 631-658. Phosphopeptide mapping of in vivo labeled P-glycoprotein, isolated from either J7.V1-1, a murine vinblastine-resistant cell line, or HeLa cells stably transfected with mdr1b P-glycoprotein cDNA, revealed that this tryptic peptide was phosphorylated in both proteins.  相似文献   

17.
Clinical chemotherapy of breast carcinomas must be considered insufficient, mainly due to the appearance of drug resistance. The multidrug resistance (MDR) phenotype, either intrinsically occurring or acquired, e.g., against a panel of different antineoplastic drugs, is discussed in relation to several MDR-associated genes such as the MDR-gene mdr1 encoding the P-glycoprotein (PGP), the MRP gene (multidrug resistance protein) encoding an MDR-related protein or the LRP gene encoding the lung resistance protein. Numerous experimental and clinical approaches aiming at reversing resistance require well-characterised in vitro and in vivo models. The aim of our work was to develop multidrug resistant sublines from human xenotransplanted breast carcinomas, in addition to the broadly used line MCF-7 and its multidrug resistant subline MCF-7/AdrR. MDR was induced in vitro with increasing concentrations of Adriablastin (ADR) for several weeks, resulting in a 3.5- to 35-fold increase in IC50 values using the MTT-test. Cell lines were cross-resistant toward another MDR-related drug, vincristine, but remained sensitive to non-MDR-related compounds such as cisplatin and methotrexate. The resistance toward Adriamycin and vincristine was confirmed in vivo by a lack of tumour growth inhibition in the nude mouse system. Gene expression data for the mdr1/PGP, MRP/MRP and LRP/LRP on both the mRNA (RT-PCR) and the protein levels (immunoflow cytometry) demonstrated that induction of mdr1 gene expression was responsible for the acquired MDR phenotype. Rhodamine efflux data, indicated by PGP overexpression, underlined the development of this MDR mechanism in the newly established breast carcinoma lines MT-1/ADR, MT-3/ADR and MaTu/ADR.  相似文献   

18.
19.
20.
AIM: To study the mechanisms of the resistance to harringtonine (Har) in the HL60 cells. METHODS: Growth inhibition, karyotype analysis, flow cytometry, Western blotting and polymerase chain reaction. RESULTS: The Har-resistant HL60 cell line, named HR20, showed cross resistance to homoharringtonine, doxorubicin, daunorubicin, vincristine, and colchicine. The growth doubling time and the cell numbers in G1 phase were increased. The accumulation of cellular daunorubicin in the resistant cells was obviously reduced, but distinctly increased by tetrandrine and verapamil. The numbers of telocentromeric chromosome increased and the chromosomal aberration more occured in the resistant cells. The resistant cells overexpressed multidrug resistant mdr-1 gene and P-glycoprotein 150 kDa. CONCLUSION: The Har-resistant HL60 cell strain belonged to a multidrug resistance strain, overexpressing mdr-1 gene and P-glycoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号