首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对添加不同含量Ce元素的Mg-Zn-Mn系ZM71变形镁合金进行挤压及热处理,测试不同状态下ZM71及ZM71-xCe合金的室温拉伸性能,利用光学金相显微镜(OM)、X射线衍射(XRD)、差热分析(DSC)、扫描电镜(SEM)以及能谱(DES)、透射电镜(TEM)等分析试验手段观察了不同状态下的显微组织,初步探讨了Ce元素在ZM71合金中的存在形式和作用机制及不同添加量对合金组织和力学性能的影响。结果表明:Ce元素主要以三元稀土τ相存在于合金中,主要分布在晶界和枝晶间,能够细化铸态组织;Ce元素能够明显细化挤压态合金的组织,提升力学性能,但添加量应控制在1%以内,其中ZM71-0.5Ce具有最佳的综合力学性能,抗拉强度、屈服强度和延伸率分别为318MPa、250MPa和13.6%;时效热处理不能提升挤压态高锌含量的Mg-Zn-Mn-Ce合金力学性能。  相似文献   

2.
采用金相显微镜、扫描电镜等手段,研究了Mg-xEr-0.6Zr(x=0、1、1.5、2)合金在铸态、挤压态和时效态的组织和力学性能。结果表明,随着稀土Er含量的增加,铸态合金的抗拉强度和屈服强度呈现出先增加后下降的趋势。在温度为300℃,挤压比为16∶1时对合金进行挤压,挤压后合金的屈服强度随着Er含量的增加而提高,抗拉强度随着Er含量的增加而减小,伸长率则分别提高了150%、150%和183%。通过170℃×8h的时效热处理后,合金的屈服强度分别提高了18%、13%和27%,伸长率则保持在25%左右。  相似文献   

3.
采用拉伸力学性能测试、宏观腐蚀、扫描电镜(SEM)、透射电镜(TEM)等,研究不同Zr含量对挤压铸造Al-5.0Cu-0.4Mn合金显微组织和力学性能的影响,并与重力铸造的合金的显微组织和力学性能进行对比分析。结果表明:针对铸态合金,无论是挤压铸造还是重力铸造,在Zr含量(质量分数)为0.25%时,合金获得最佳的抗拉强度、屈服强度和伸长率;而对于热处理态合金,当Zr含量从0增加到0.35%时,合金的抗拉强度和屈服强度都随着Zr含量的增加而增加,但伸长率在Zr含量为0.15%时达到最大值。挤压铸造可以显著改善不同Zr含量合金的伸长率,但对铸态合金伸长率的提升幅度明显优于热处理态合金的。Zr在铸态合金中的强化作用主要是细晶强化,而合金经T6热处理后,固溶强化以及Al3Zr粒子和θ?相的弥散强化是主要强化机制,挤压铸造可以显著改善Al3Zr粒子的弥散强化效果。  相似文献   

4.
混合稀土(MM)对ZM5镁合金组织和性能的影响   总被引:1,自引:0,他引:1  
研究了RE对ZM5镁合金显微组织和力学性能的影响.对显微组织的观察表明,加入RE后,显著改变了ZM5合金的铸态组织,使其晶粒细化.同时,加入少量的RE可以提高ZM5合金的抗拉强度和伸长率,当RE含量为0.75%时,合金的抗拉强度和伸长率分别达到了182 MPa和4.54%.固溶25 h处理后,合金中形成热稳定性强的富铝稀土相Al11Ce3,对晶界起到了强化作用,使合金的抗拉强度达到了250 MPa,伸长率达到8.05%.  相似文献   

5.
在AZ61合金中添加0%、0.5%、1%和1.5%(质量分数)的铈(Ce)制备了4种合金,研究了Ce含量和合金变形状态对其力学性能和显微组织的影响.实验表明,添加Ce元素后,形成的Al4Ce对合金有强化作用,但其铸态组织仍然粗大,需要经过轧制及退火,合金组织才能得到改善.力学性能测试结果表明,随Ce含量的增加,轧制态合金强度上升,伸长率有所提高.300℃退火1h后,强度比轧制态有所降低,但伸长率提高较大.含1.0%Ce的3#合金具有最好的综合力学性能,挤压+轧制加工态其抗拉强度、屈服强度和伸率长分别为350 MPa、274MPa和6.2%;300℃×lh退火后,分别为306 MPa、201MPa和18.7%.  相似文献   

6.
赵玉华  王猛 《铸造》2012,61(7):758-763
采用挤压铸造和挤压变形工艺制备了Mg-Bi二元合金,通过金相显微镜分析,室温拉伸性能测试,X射线衍射分析,SEM和EDS等手段,研究了Mg-Bi合金在铸态和热挤压态的显微组织和力学性能.结果表明:铸态Mg-Bi合金随着Bi含量的增加,伸长率逐渐降低,抗拉强度逐渐增加,当Bi含量达10wt.%以上,抗拉强度降低;Mg-Bi合金铸锭经450℃、3h保温,挤压比为12.76热挤压后,随Bi含量的增加,抗拉强度与伸长率均逐渐增加,当Bi含量达12wt.%时,抗拉强度为219.68 MPa,伸长率为13.43%,Bi含量继续增加,合金抗拉强度及伸长率呈下降趋势;挤压态Mg-Bi合金的力学性能是晶粒细化与Mg3Bi2综合作用的结果,当Bi含量大于12wt.%后,形成较多粗大的Mg3Bi2相是导致合金力学性能下降的主要原因.  相似文献   

7.
Ca对Mg-6Zn合金组织与力学性能的影响   总被引:1,自引:0,他引:1  
通过光学显微镜(OM)、扫描电镜(SEM)和X射线衍射(XRD)研究了Mg-6Zn-xCa(x=0~1.35)合金的铸态和挤压态组织与相组成,测试了其室温力学性能。结果表明,随着Ca含量的增加,铸态组织逐渐细化,生成的Mg6Zn3Ca2相逐渐增多,而MgZn2相逐渐减少直至完全消失,第二相趋于连续网状分布于晶界处;挤压态组织明显细化,且平均晶粒尺寸从Mg-6Zn合金的15μm逐渐减至Mg-6Zn-0.47Ca合金的10μm。随着Ca含量的增加,铸态抗拉强度、屈服强度和伸长率先从Mg-6Zn合金的154MPa、67MPa、6.5%分别提高至Mg-6Zn-0.085Ca合金的230MPa、84MPa、14%,然后逐渐降低。挤压态力学性能明显提高,加入少量Ca(0.085%)后,抗拉强度和屈服强度稍降低,伸长率提高,而加入较多量Ca(0.47%)后,力学性能明显恶化。  相似文献   

8.
研究了不同的稀土含量(富Ce和Mg-Nd中间合金)对AZ61镁合金在热挤压变形过程中显微组织和力学性能的影响。结果表明,在加入1%~4%的混合稀土后,铸态AZ61镁合金组织中的β相明显减少,铸态组织晶粒得到细化,大部分的Ce,Nd与Al结合生成高熔点、高稳定性的稀土相Al4Ce或者Al4Ce和Al3Nd稀土混合相,并呈针状、棒状或者不规则块状分布于晶界或晶粒内部,同时各试验合金中均不同程度分布有不规则的块状α-Al8Mn5相;在热挤压过程中,Al4Ce或者Al4Ce和Al3Nd稀土混合相阻碍晶粒或亚晶粒长大,使晶粒较铸态组织变细,合金力学性能随稀土含量的增加有所提升,但由于稀土相较粗大,割裂晶界及晶粒间的结合力,使其性能大幅度下降;铸态AZ61+xRE各试验合金均为脆性断裂机制,挤压态AZ61合金断裂方式属于以韧性为主的韧脆混合断裂,含稀土挤压态合金中分布有塑性特征的韧窝,但主要以解理断裂为主。  相似文献   

9.
Zn添加对挤压态Mg-Zn-Ce-Zr合金微观组织及力学性能的影响   总被引:1,自引:0,他引:1  
通过光学显微镜(OM)、扫描电镜(SEM)、背散射电子衍射(EBSD)和力学性能检测,研究不同Zn含量(0.5%、1.5%和2.0%(质量分数))的Mg-Zn-Ce-Zr合金在温度为350℃,挤压比为9,挤压速率为10 mm/s条件下挤压后的微观组织和力学性能。结果表明:随着Zn含量的增加,铸态下晶间析出相明显增多;挤压后,Zn含量对合金晶粒度的影响不大,但棒材的丝织构随Zn含量增加而增强。由于第二相粒子的强化作用,随Zn含量增加,合金的拉伸屈服强度从158 MPa增加到192 MPa,而抗拉强度从219 MPa提高到246 MPa。由于丝织构强度增加,合金塑性随Zn含量增加从33%降低至18%,添加0.5%Zn合金的伸长率和拉压对称性最好。  相似文献   

10.
利用光学显微镜、扫描电镜和万能材料试验机等设备,研究了Nd添加对ZM21镁合金挤压态组织和性能的影响.结果表明,当Nd添加量为0.5wt%时,挤压态合金具有最细小的显微组织,合金的塑性亦最高,伸长率达32.2%,比不加合金时增加40%,合金的抗拉强度为232 MPa,比不含钕时有所降低.加入0.5wt% Nd使ZM21合金出现弥散分布的Mg-Zn-Nd三元合金相;Nd添加量为0.7wt%时,三元合金相增多;Nd的添加能使挤压态ZM21合金的断裂方式从脆性断裂转变为具有部分韧窝的混合断裂.  相似文献   

11.
通过OM、SEM、XRD和拉伸实验研究3种典型的Mg-Li-Al合金的铸态和挤压态组织及力学性能。结果表明:随着Li含量的增加,合金的结构从密排六方向体心立方转变,合金的铸态组织随之发生改变。经过250℃挤压处理后,Mg-5Li-1Al和Mg-9Li-1Al合金的晶粒沿挤压方向呈方向性排列,Mg-14Li-1Al合金由均匀的等轴晶(再结晶晶粒)组成。随着Li含量的增加,挤压态合金板材的屈服强度逐渐增大,其中挤压态Mg-9Li-1Al合金板材的综合力学性能最佳(屈服强度达到149 MPa,伸长率达到25%)。  相似文献   

12.
Ce和Sb对Mg-3%Al合金铸态组织与力学性能的影响   总被引:2,自引:0,他引:2  
研究了合金元素Ce和Sb对Mg-3%Al基合金显微组织和力学性能的影响。结果表明,Ce,Sb元素加入后使β-Mg17Al12相以细小弥散形态分布。只加入Ce元素时,Ce与合金中的Al元素形成针状的Al4Ce相,合金的铸态室温力学性能较Mg-3%Al合金更差;而Ce,Sb元素同时加入时,在基体中形成了弥散分布的CeSb颗粒相,同时抑制了针状的Al4Ce相的生成,合金表现出较好的强度和塑性。与Mg-3%Al合金相比,Mg-3%Al-1%Ce-1%Sb合金的铸态拉伸强度Rm提高了7.5%,伸长率A提高了91%。  相似文献   

13.
选择AZ31、AZ61和AZ91镁合金,通过加入不同含量的铈元素,系统研究了铈元素对镁-铝-锌系镁合金的热变形行为、相组成、微观组织结构和力学性能的影响.实验表明,添加Ce元素后,形成的Al4Ce对合金有强化作用,但其铸态组织仍然粗大,需要经过轧制及退火,合金组织才能得到改善.力学性能测试结果表明,随Ce含量的增加,轧制态合金强度上升,伸长率有所提高.添加铈的8#合金有最高的强度,轧制态,其抗拉强度为350 MPa,屈服强度为274 MPa,伸长率为6.2%;退火后,抗拉强度、屈服强度和伸长率分别为306.1 MPa、201.4 MPa和18.7%.  相似文献   

14.
对Mg-6Zn-x Cu-0.6Zr(x=0,0.5,1.0,1.5)合金进行了熔炼并浇注在金属模中,然后进行了挤压成形试验。结果表明:铸态合金随着Cu含量的增加晶粒逐渐细化,第二相含量增多,其组织由α-Mg、MgZn_2及Mg Zn Cu相组成。合金经挤压后力学性能明显提高,其中挤压ZK60合金的动态再结晶较弱,晶粒细化程度较小。铸态合金组织中的第二相在挤压过程中被打碎,并沿着挤压方向分布。挤压态合金晶粒细化程度明显,其平均晶粒尺寸可达到10~13μm。Mg Zn Cu相呈短棒状分布在晶界,而Mg Zn2相呈细小的颗粒状分布在基体上。挤压态合金力学性能改善的原因可归结为细晶强化、第二相弥散强化及固溶强化综合作用的结果。其中挤压态Mg-6Zn-1.0Cu-0.6Zr力学性能最优,其抗拉强度、屈服强度及伸长率分别达到320.22 MPa,240 MPa和11.48%。  相似文献   

15.
稀土铈对AZ61变形镁合金组织和力学性能的影响   总被引:39,自引:1,他引:39  
研究了不同稀土铈含量对AZ61合金显微组织和力学性能的影响.实验发现:加入稀土铈后,AZ61合金铸态组织的β相变少、变细,铸态晶粒细化;大部分铈与铝结合生成高熔点、高热稳定性的稀土相Al4Ce;在热挤压和退火过程中,Al4Ce能够阻碍晶粒或亚晶粒的长大,使晶粒细化.适量的稀土铈提高了挤压态合金的强度、延伸率和显微硬度;而过量的稀土铈则会导致AZ61合金的性能下降;含1.0%稀土铈的挤压态合金可得到最高的抗拉强度308.1MPa、最高屈服强度180.1MPa、最大的显微硬度HV80.5和最高的延伸率14.2%;所有试验合金的断裂方式是解理断裂.  相似文献   

16.
研究了Ce添加量分别为0.09%及0.23%的Al-4.15Cu-1.25Li-X高强铝锂合金薄板T6态时效(175℃时效)及T8态时效(5%冷轧预变形+155℃时效)时的微观组织和拉伸性能。结果表明,相比T6态时效,T8态时效时铝锂合金强度及伸长率均有所提高。T8态时效时,含0.23%Ce的铝锂合金强度及伸长率均低于Ce含量为0.09%的铝锂合金。Ce含量增加未改变铝锂合金中时效析出相的种类,主要强化相仍为T1相(Al_2CuLi)及θ'相(Al_2Cu),但其数量减少。微量Ce的添加可形成含Ce且富Cu的Al_8Cu_4Ce相粒子,这些粒子在均匀化及固溶处理时均难以完全溶解。Ce含量增加,导致固溶基体中Cu含量降低,时效时含Cu析出相T1相及θ'相含量减少,铝锂合金强度降低。  相似文献   

17.
在AZ31合金中添加0、0.2%、0.5%和1%(质量分数)的铈(Ce)制备了4种合金,研究不同Ce含量和合金变形状态对力学性能和显微组织的影响。试验表明,添加Ce元素后,形成的Al4Ce对合金有强化作用,但其铸态组织仍然粗大,经过轧制及退火后,合金的组织得到改善。力学性能测试结果表明,轧制态合金强度随Ce含量的增加而上升,伸长率亦有所提高,300℃退火1h后,强度比轧制态有所降低,伸长率提高较大。含0.5%铈的3号合金综合力学性能最好,屈服强度为168MPa,抗拉强度达到255MPa,伸长率为22%。  相似文献   

18.
研究Zn和Gd元素含量及其质量比对铸态和挤压态Mg-8Li合金显微组织和力学性能的影响。挤压后,析出相破碎。β-Li中分散着粒径约100 nm的球形微粒。形成了由长条状α-Mg粗晶和再结晶β-Li细晶组成的双峰结构。挤压后合金的强度和塑性显著提高,且屈服强度和极限抗拉强度随Zn和Gd含量的增加而增加。Mg-8Li-8Zn-2Gd合金表现出最优的综合性能,其屈服强度、极限抗拉强度和伸长率分别为274 MPa、283 MPa和39.9%。挤压态合金主要强化机制为由β-Li的细晶强化和α-Mg的织构强化组成的双模态结构强化和析出相的弥散强化。  相似文献   

19.
本文通过 XRD、OM、SEM、TEM 和万能拉伸试验机系统地研究了铸态与挤压态 Mg100-3xY2xZnx(x=0.5,1,2;at%)合金的显微组织与力学性能。结果发现,铸态与挤压态合金均由 α-Mg 基体和 LPSO 相组成,且同时增加 Y 和 Zn 元素不仅可以促进铸态合金中 18R-LPSO 相的形成,还能够有效促进挤压态合金中 14H-LPSO相的动态析出。其次,挤压态 Mg100-3xY2xZnx合金基体均由再结晶与未再结晶双峰组织组成,且 18R 与 14H-LPSO相沿挤压方向呈现条带状分布。与此同时,18R-LPSO 相体积分数的增加严重阻碍了动态再结晶的形成与长大。此外,随着 Y 和 Zn 元素的同时增加,铸态与挤压态合金的强度不断降低而塑性逐渐增加,最后使得挤压态 Mg98.5Y1Zn0.5合金表现出较高的塑性(伸长率达 35.1 %),而 Mg94  相似文献   

20.
对比分析了铸态、均匀化态以及挤压变形后AZ31合金的显微组织,研究了挤压温度和挤压比对合金抗拉强度和断后伸长率的影响。结果表明,415℃×15 h均匀化后AZ31合金中的枝晶数量明显减少,粗大的颗粒状或者蠕虫状第二相基本消失,细小颗粒均匀分布在合金基体中;均匀化后AZ31合金在低温和大挤压比变形可以获得较高的塑性;随着挤压比增大,均匀化后挤压变形的AZ31合金的抗拉强度和断后伸长率都表现为逐渐增加的趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号