首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
版图结构对MOS器件总剂量辐照特性的影响   总被引:1,自引:0,他引:1  
在商用标准0.6μm体硅CMOS工艺下,设计了采用普通单栅及多栅版图结构的nMOS和pMOS晶体管作为测试样品,讨论其经过γ射线照射后的总剂量辐照特性.辐照中器件采用不同电压偏置,并在辐照前后对器件的源漏极间泄漏电流、阈值电压漂移及跨导特性进行测量.研究表明nMOS总剂量效应对器件的版图结构非常敏感,而pMOS的总剂量效应几乎不受版图结构的影响.  相似文献   

2.
A comparison between pMOS and nMOS short channel transistors with high-k dielectric subjected to channel hot-carrier (CHC) stress is presented. Smaller CHC degradation is observed in pMOS devices. At high temperature, the CHC degradation increases for pMOS and nMOS. The temperature dependence of the CHC degradation has been explained, for both transistor types, by considering a larger influence of a bias temperature instability (BTI)-related component of the total CHC induced degradation.  相似文献   

3.
The difference between the threshold voltages V/sub t/ of pMOS and nMOS transistors is a critical issue in the low-voltage operation of CMOS circuits. The pMOS/nMOS V/sub t/ balancing profit is analyzed in terms of subthreshold leakage current and the performance of CMOS LSIs and the minimum supply voltage of logic circuits. Matching the pMOS/nMOS V/sub t/ improves LSI performance and reduces the lowest supply voltage by 0.15 V. We propose a new concept of body bias management that uses forward biasing, fluctuation compensating, and V/sub t/ matching technologies to resolve the issue.  相似文献   

4.
A novel plasma-process induced damage depassivation method is proposed. Using a staircase-like stress voltage and varying the stress time, we were able to depassivate the latent damage at very low-field on both nMOS and pMOS devices. The dynamic of the interface traps generation is studied; pMOS devices show a peculiar behavior, which can be explained understanding the mechanisms involved in damage depassivation. The energy of carriers is identified as the damaging factor.  相似文献   

5.
The threshold voltages of thin-film fully-depleted silicon-on-insulator (FDSOI) nMOS and pMOS have been controlled by employing tantalum (Ta) as the gate materials. Ta-gate FDSOI MOSFET's have excellent threshold voltage control for 1.0 V application on low impurity concentration SOI layers in both nMOS and pMOS. The low-temperature processing after the gate oxidation step leads to good on/off characteristics in Ta-gate SOI MOSFET's because of no reaction between Ta gate electrode and SiO2 gate insulator. This technology makes it possible to drastically decrease the number of the process steps for CMOS fabrication, because the same gate material is available for both nMOS and pMOS  相似文献   

6.
Part I of this paper dealt with the fundamental understanding of device physics and circuit design in a novel transistor, based on the field-effect control of impact-ionization (I-MOS). This paper focuses on experimental results obtained on various silicon-based prototypes of the I-MOS. The fabricated p-channel I-MOS devices showed extremely abrupt transitions from the OFF state to the ON state with a subthreshold slope of less than 10 mV/dec at 300 K. These first experimental prototypes of the I-MOS also showed significant hot carrier effects resulting in threshold voltage shifts and degradation of subthreshold slope with repeated measurements. Hot carrier damage was seen to be much worse in nMOS devices than in pMOS devices. Monte Carlo simulations revealed that the hot carrier damage was caused by holes (electrons) underneath the gate in pMOS (nMOS) devices and, thus, consequently explained the difference in hot carrier effects in p-channel versus n-channel I-MOS transistors. Recessed channel devices were also explored to understand the effects of surfaces on the enhancement in the breakdown voltage in I-MOS devices. In order to reduce the breakdown voltage needed for device operation, simple p-i-n devices were fabricated in germanium. These devices showed much lower values of breakdown voltage and excellent matches to MEDICI simulations.  相似文献   

7.
0.1-μm CMOS devices using low-impurity-channel transistors (LICTs) with dual-polysilicon gates have been fabricated by nondoped epitaxial growth technology, high-pressure oxidation of field oxide, and electron-beam lithography. These devices, with gate lengths of 0.135 μm, achieved normal transistor operation at both 300 and 77 K using 1.5-V supply voltage. Maximum transconductances are 203 mS/mm for nMOS transistors and 124 mS/mm for pMOS transistors at 300 K. Low-impurity channels grown on highly doped wells provide low threshold voltages of about 0.35 V for nMOS transistors and about -0.15 V for pMOS transistors at 77 K, and preserve good turn-offs with subthreshold swings of 25 mV/decade at 77 K. LICTs suppress short-channel effects more effectively, compared with conventional devices with nearly uniform dopings  相似文献   

8.
制备并研究了TiN栅薄膜全耗尽SOI CMOS器件,并对其关键工艺进行了详细阐述.相对于双多晶硅栅器件,在不改变阈值电压的前提下,可以减小nMOS和pMOS的沟道掺杂浓度,进而提高迁移率.由于TiN的功函数处于中间禁带,在几乎相同的调整阈值注入剂量下,可以得到对称的阈值电压.当顶层硅膜厚度减小时,可以改善短沟道效应.  相似文献   

9.
W/TiN Gate Thin-Film Fully-Depleted SOI CMOS Devices   总被引:1,自引:1,他引:0  
Lian  Jun  an  Hai  Chaohe 《半导体学报》2005,26(1):6-10
TiN gate thin-film fully-depleted SOI CMOS devices are fabricated and discussed.Key process technologies are demonstrated.Compared with the dual polysilicon gate devices,the channel doping concentration of nMOS and pMOS can be reduced without changing threshold voltage (VT),which enhances the mobility.Symmetrical VT is achieved by nearly the same VT implant dose because of the near mid-gap workfunction of TiN gate.The SCE effect is improved when the thin-film thickness is reduced.  相似文献   

10.
Plasma-induced charging damage in ultrathin (3-nm) gate oxides   总被引:3,自引:0,他引:3  
Plasma-induced damage in various 3-nm-thick gate oxides (i.e., pure oxides and N2O-nitrided oxides) was investigated by subjecting both nMOS and pMOS antenna devices to a photoresist ashing step after metal pad definition. Both charge-to-breakdown and gate leakage current measurements indicated that large leakage current occurs at the wafer center as well as the wafer edge for pMOS devices, while only at the wafer center for nMOS devices. These interesting observations could be explained by the strong polarity dependence of ultra thin oxides in charge-to-breakdown measurements of nMOS devices. In addition, pMOS devices were found to be more susceptible to charging damage, which can be attributed to the intrinsic polarity dependence in tunneling current between nand p-MOSFETs. More importantly, our experimental results demonstrated that stress-induced leakage current (SILC) caused by plasma damage can be significantly suppressed in N2O-nitrided oxides, compared to pure oxides, especially for pMOS devices. Finally, nitrided oxides were also found to be more robust when subjected to high temperature stressing. Therefore, nitrided oxides appear to be very promising for reducing plasma charging damage in future ULSI technologies employing ultrathin gate oxides  相似文献   

11.
In this work we demonstrate a novel integration approach to fabricate CMOS circuits on plastic substrates (poly-ethylene naphthalate, PEN). We use pentacene and amorphous silicon (a-Si:H) thin-film transistors (TFTs) as p-channel and n-channel devices, respectively. The maximum processing temperature for n-channel TFTs is 180 °C and 120 °C for the p-channel TFTs. CMOS circuits demonstrated in this work include inverters, NAND, and NOR gates. Carrier mobilities for nMOS and pMOS after the CMOS integration process flow are 0.75 and 0.05 cm2/V s, respectively. Threshold voltages (Vt) are 1.14 V for nMOS and −1.89 V for pMOS. The voltage transfer curve of the CMOS inverter showed a gain of 16. Correct logic operation of integrated flexible NAND and NOR CMOS gates is also demonstrated. In addition, we show that the pMOS gate dielectric is likely failing after electrical stress.  相似文献   

12.
介绍了采用全剂量SIMOX SOI材料制备的0.8μm SOI CMOS器件的抗总剂量辐射特性,该特性用器件的阈值电压、漏电流和专用集成电路的静态电流与高达500krad(Si)的总剂量的关系来表征.实验结果表明pMOS器件在关态下1Mrad(Si)辐射后最大阈值电压漂移小于320mV,nMOS器件在开态下1Mrad(Si)辐射后最大阈值电压漂移小于120mV,器件在总剂量1Mrad(Si)辐射后没有观察到明显漏电,在总剂量500krad(Si)辐射下专用集成电路的静态电流小于5μA.  相似文献   

13.
This paper presents an electrical analysis of mechanical stress induced by shallow trench isolation (STI) on MOSFETs of advanced 0.13 /spl mu/m bulk and silicon-on-insulator (SOI) technologies. By applying external calibrated stress, we present piezoresistive coefficients measurements on these technologies, and we compare small and long transistors electrical responses, evidencing the strong effect of source drain resistance R/sub sd/. Then, using the same approach on short devices with different gate-edge-to-STI distances, we quantitatively evaluate stress profile induced by STI and its mean value under the gate of the devices. Results are discussed to explain differences between bulk and SOI technologies, as well as between nMOS and pMOS. We show that the observed higher pMOS drain current shift is related to the process, and may be explained by doping amorphization and recrystallization effects, and not by a piezoresistive coefficient difference as usually assumed.  相似文献   

14.
We present an ultra-low-power, delayed least mean square (DLMS) adaptive filter operating in the subthreshold region for hearing aid applications. Subthreshold operation was accomplished by using a parallel architecture with pseudo nMOS logic style. The parallel architecture enabled us to operate the system at a lower clock rate and reduced supply voltage while maintaining the same throughput. Pseudo nMOS logic operating in the subthreshold region (subpseudo nMOS) provided better power-delay product than subthreshold CMOS (sub-CMOS) logic. Simulation results show that the DLMS adaptive filter can operate at 22 kHz using a 400-mV supply voltage to achieve 91% improvement in power compared to a nonparallel, CMOS implementation. To validate the robust operation of subthreshold logics, a 0.35 /spl mu/m, 23.1 kHz, 21.4 nW, 8/spl times/8 carry save array multiplier test chip was fabricated where an adaptive body biasing scheme is used for compensating process, supply and temperature variations. The test chip showed stable operation at a supply voltage of 0.30 V, which is even lower than the threshold voltages of the pMOS (0.82 V) and nMOS (0.67 V) transistors.  相似文献   

15.
Investigations of Key Technologies for 100V HVCMOS Process   总被引:1,自引:0,他引:1  
提出了一种新的双栅氧(dual gate oxide,DGO)工艺,有效提高了薄栅氧器件与厚栅氧器件的工艺兼容性,同时提高了高低压器件性能的稳定性.在中国科学院微电子研究所0.8μm n阱标准CMOS工艺基础上设计出高低压兼容的100V高压工艺流程,并流片成功.实验结果表明,高压n管和高压p管的关态击穿电压分别为168和-158V,可以在100V高压下安全工作.  相似文献   

16.
宋李梅  李桦  杜寰  夏洋  韩郑生  海潮和 《半导体学报》2006,27(11):1900-1905
提出了一种新的双栅氧(dual gate oxide,DGO)工艺,有效提高了薄栅氧器件与厚栅氧器件的工艺兼容性,同时提高了高低压器件性能的稳定性.在中国科学院微电子研究所0.8μm n阱标准CMOS工艺基础上设计出高低压兼容的100V高压工艺流程,并流片成功.实验结果表明,高压n管和高压p管的关态击穿电压分别为168和-158V,可以在100V高压下安全工作.  相似文献   

17.
Based on a 90-nm silicon-on-insulator (SOI) CMOS process, the floating-body potential of H-gate partially depleted SOI pMOS and nMOS devices with physical gate oxide of 14 /spl Aring/ is compared. For pMOS devices, because the conduction-band electron (ECB) tunneling barrier is lower (/spl cong/3.1 eV), the ECB direct-tunneling current from the n/sup +/ poly-gate beside the body terminal will contribute to a large amount of electron charges into the neutral region and dominate the floating-body potential under normal operations. Conversely, owing to the higher valence-band hole tunneling barrier (/spl cong/4.5 eV), the floating-body potential of nMOS devices is dominated by the band-to-band-tunneling mechanism at the drain-body junction, not the direct-tunneling mechanism.  相似文献   

18.
近年来,驱动类、音响类、接口类电路产品系列是CMOS集成电路发展的一个重要方向,这些电路中特有的高低压兼容结构是其重要的特点.相应地高低压兼容CMOS工艺技术应用也越来越广泛.本文研究了与常规CMOS工艺兼容的高压器件的结构与特性,在结构设计和工艺上做了大量的分析和实验,利用n-well和n管场注作漂移区,在没有增加任何工艺步骤的情况下,成功地将高压nMOS,pMOS器件嵌入在商用3.3/5V 0.5μm n-well CMOS工艺中.测试结果表明,高压大电流的nMOS管BVdssn达到23~25V,P管击穿BVdssp>19V.  相似文献   

19.
This paper proposes a new circuit topology for RF CMOS low noise amplifier (LNA). Since pMOS devices are approaching the performances of nMOS devices in scaled technologies, the idea is to realize the input stage shunting an inductively degenerated nMOS stage with a pMOS one. In this way, due to the inherent current reuse, the performances can be improved using the same power consumption. Since the devices of an inductively degenerated input stage are working in moderate inversion (at least at moderate power dissipation), prior to the stage optimization an appropriate moderate inversion model is introduced. A fully differential 900-MHz 0.35-μm CMOS LNA (plus output buffer) prototype achieves the following performances: 2-dB noise figure (NF), 17.5-dB power gain, -6-dBm IIP3 with 8-mA current consumption from a 2.7-V voltage supply. To the author's knowledge, this is the lowest reported NF for a fully differential CMOS LNA operating at this power consumption level. As an additional feature, this LNA has a programmable gain  相似文献   

20.
A new dual poly-Si gate CMOS fabrication process is proposed. The incorporated technology features a boron-penetration-resistant MBN gate structure for pMOSFET's, and a dual poly-Si gate CMOS process involving separate depositions of in-situ doped n+ and p+ poly-Si for the nMOS and pMOS gates, 0.2-μm CMOS devices with 3.5-nm gate oxide have been successfully fabricated. The advantages of the new process are demonstrated on these test devices. A CMOS 1/16 dynamic frequency divider fabricated by the new process functions properly up to 5.78 GHz at a 2-V supply voltage  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号