首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this investigation, the boundary layer flow and heat transfer analysis in a Maxwell fluid over an exponentially continuous moving sheet are studied. The transformed boundary layer equations are solved numerically for a non‐similar solution using a shooting method with the Runge–Kutta algorithm. The purpose of this article is to look into the influence of the Deborah number on the velocity, temperature, and Nusselt number. The obtained results show that an increase in the Deborah number decreases the fluid velocity and boundary layer thickness. On the other hand, it increases the temperature and thermal boundary layer thickness. It is also found that the numerical results are in excellent agreement with the previous existing results for the case of a Newtonian fluid (λ = 0). © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(3): 233–242, 2014; Published online 30 August 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21074  相似文献   

2.
An analysis has been carried out to investigate the analytical solution to the flow and heat transfer characteristics of a viscous flow over a stretching sheet in the presence of second‐order slip in flow. The governing partial differential equations of flow and heat transfer are converted into non‐linear ordinary differential equations by using suitable similarity transformations. The exact solution of momentum equation is assumed in exponential form and analytical solutions of heat transfer for both PST and PHF cases are obtained by the power series method in terms of Kummer's hypergeometric function. The temperature profiles are drawn for different governing parameters. The numerical values of wall temperature gradient and wall temperature are compared with earlier numerical results which have a good agreement. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21044  相似文献   

3.
In this article, effects of Soret and Dufour on free convection heat and mass transfer along a vertical plate embedded in a doubly stratified power‐law fluid‐ saturated non‐Darcy porous medium in the presence of a magnetic field is considered. The governing partial differential equations are transformed into ordinary differential equations using similarity transformations, with the location along the plate as a parameter and then solved numerically. A parametric study of the physical parameters involved in the problem is conducted and a representative set of numerical results is illustrated by insisting on the comparison between pseudo‐plastic, dilatant, and Newtonian fluids. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(7): 592–606, 2014; Published online 11 November 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21098  相似文献   

4.
This paper examines thermal‐diffusion and diffusion‐thermo effects on the fully developed MHD flow of a micropolar fluid through a porous space in a vertical channel with asymmetric wall temperatures and concentrations. The homotopy analysis method (HAM) is adopted to obtain the approximate analytical solution for the velocity, micro‐rotation, temperature, and concentration field. The convergence and the accuracy of the solutions are discussed. The role of pertinent parameters on the heat and mass transfer characteristics of the flow are presented graphically. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(6): 561–576, 2014; Published online 11 November 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21100  相似文献   

5.
In the present study analysis has been performed for thermosolutal convection in a fluid‐porous composite medium, consisting of a fluid‐saturated porous medium followed by an overlaying clean medium. The fluid‐porous composite medium is subjected to both a horizontal solutal and a thermal gradient. Top and bottom walls of the fluid‐porous composite medium are assumed to be impermeable and adiabatic. The Darcy‐Brinkman‐Forchheimer model is used to study the flow through the fluid‐porous composite medium. A single domain approach is taken into consideration for numerical simulation. The solution is done by control volume integration. A comprehensive analysis has been performed for various pertinent parameters to delineate their behavior. Results of the transport phenomenon have been provided in graphical and tabular form, for the complete understanding of the complex phenomenon. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21048  相似文献   

6.
The suction and injection effects on the free convection boundary‐layer flow over a vertical cylinder are studied. The main stream velocity and wall temperature are proportional to the axial distance along the surface of the cylinder. Both analytic and numerical solutions of the arising mathematical problem are obtained. An analytic solution is derived by a new analytical method (DTM‐Padé) and numerical solutions have been performed by using a fourth‐order Runge–Kutta and shooting methods. Velocity and temperature profiles are shown graphically. It is shown that the differential transform method (DTM) solutions are only valid for small values of the independent variable but the obtained results by DTM‐Padé are valid for the whole solution domain with high accuracy. These methods can be easily extended to other linear and nonlinear equations and so can be found widely applicable in engineering and sciences. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20366  相似文献   

7.
In this article, we use the optimal homotopy asymptotic method (OHAM) to compute the solution of two‐dimensional incompressible laminar boundary layer flow over a flat plate (Blasius problem). The obtained results for the stream function and velocity profile were comparable in terms of accuracy with that obtained by Esmaeilpour and Ganji (2007) who studied the same problem using the homotopy perturbation method and results obtained by using a numerical method (RK4). The good agreement obtained shows the effectiveness of OHAM. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(3): 197–203, 2014; Published online 19 June 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21070  相似文献   

8.
This article is concerned with the steady laminar magnetohydrodynamic boundary‐layer flow past a stretching surface with uniform free stream and internal heat generation or absorption in an electrically conducting fluid. A constant magnetic field is applied in the transverse direction. A uniform free stream of constant velocity and temperature is passed over the sheet. The effects of free convection and internal heat generation or absorption are also considered. The governing boundary layer and temperature equations for this problem are first transformed into a system of ordinary differential equations using similarity variables, and then solved by a new analytical method and numerical method, by using a fourth‐order Runge–Kutta and shooting method. Velocity and temperature profiles are shown graphically. It is shown that the differential transform method solutions are only valid for small values of independent variables but the results obtained by the DTM‐Padé are valid for the entire solution domain with high accuracy. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21054  相似文献   

9.
This study investigates the boundary‐layer flow and heat transfer characteristics in a second‐grade fluid through a porous medium. The similarity transformation for the governing equations gives a system of nonlinear ordinary differential equations which are analytically solved by the differential transform method (DTM) and the DTM‐Padé. The DTM‐Padé is a combination of the DTM and the Padé approximant. The convergence analysis elucidates that the DTM does not give accurate results for large values of independent variables. Hence the DTM is not applicable for the solution of boundary‐layer flow problems having boundary conditions at infinity. Comparison between the solutions obtained by the DTM and the DTM‐Padé with numerical solution (fourth‐order Runge–Kutta with shooting method) illustrates that the DTM‐Padé is the most effective method for solving the problems that have boundary conditions at infinity. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21030  相似文献   

10.
This work is focused on the study of heat and mass transfer by mixed convection over a vertical slender cylinder in the presence of chemical reaction and thermal‐diffusion and diffusion‐thermo effects. The resulting equations have the property whereby they reduce to various special cases previously considered in the literature. An adequate implicit, tri‐diagonal finite‐difference scheme is employed for the numerical solution of the obtained equations. Various comparisons with previously published work are performed and the results are found to be in excellent agreement. Representative results for the local skin‐friction coefficient, local Nusselt number, and the local Sherwood number illustrating the influence of the surface transverse curvature parameter, Richardson number, concentration to thermal buoyancy ratio, Schmidt number, chemical reaction, and the Dufour and Soret numbers are presented and discussed. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 42(7): 618–629, 2013; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21045  相似文献   

11.
The effects of viscous dissipation and solutal dispersion on free convection about an isothermal vertical cone with a fixed apex half angle, pointing downwards in a power‐law fluid‐saturated non‐Darcy porous medium are analyzed. The governing partial differential equations are transformed into partial differential equations using non‐similarity transformation. The resulting equations are solved numerically using an accurate local non‐similarity method. The accuracy of the numerical results is validated by a quantitative comparison of the heat and mass transfer rates with previously published results for a special case and the results are found to be in good agreement. The effects of viscous dissipation, solutal dispersion, and/or buoyancy ratio on the velocity, temperature, and concentration field as well as on the heat and mass transfer rates are illustrated, by insisting on the comparison between pseudo‐plastic, dilatant, and Newtonian fluids. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(5): 476–488, 2014; Published online 11 November 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21095  相似文献   

12.
An inverse solution has been explicitly derived for two‐dimensional heat conduction in cylindrical coordinates using the Laplace transformation. The applicability of the inverse solution is checked using the numerical temperatures with a normal random error calculated from the corresponding direct solution. For a gradual temperature change in a solid, the surface heat flux and temperature can be satisfactorily predicted, while for a rapid change in the temperature this method needs the help of a time partition method, in which the entire measurement time is split into several partitions. The solution with the time partitions is found to make an improvement in the prediction of the surface heat flux and temperature. It is found that the solution can be applied to experimental data, leading to good prediction. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(7): 602–617, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10115  相似文献   

13.
In this paper, a variational iteration method (VIM) has been applied to nonlinear non‐Fourier conduction heat transfer equation with variable specific heat coefficient. The concept of the variational iteration method is introduced briefly for applying this method for problem solving. The proposed iterative scheme finds the solution without any discretization, linearization, or restrictive assumptions. The results of VIM as an analytical solution are then compared with those derived from the established numerical solution obtained by the fourth order Runge–Kutta method in order to verify the accuracy of the proposed method. The results reveal that the VIM is very effective and convenient in predicting the solution of such problems, and it is predicted that VIM can find a wide application in new engineering problems. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20362  相似文献   

14.
In this paper, coupled nonlinear equations governing the flow for magnetoconvection in a vertical channel for open and short circuits are solved. The calculations are carried out by using differential transformation method (DTM) which is a semi‐numerical–analytical solution technique. By using DTM, the nonlinear constrained governing equations are reduced to recurrence relations and related initial conditions are transformed into a set of algebraic equations. The principle of differential transformation is briefly introduced, and then applied for the aforementioned problems. The current results are then compared with those derived from the finite difference method (FDM) and perturbation method (PM) in order to verify the accuracy of the proposed method. The findings reveal that the DTM can achieve more suitable results in predicting the solution of such problems. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21035  相似文献   

15.
In this article we consider a model describing the temperature profile in a longitudinal fin with rectangular, concave, triangular, and convex parabolic profiles. Both thermal conductivity and the heat transfer coefficient are assumed to be temperature‐dependent, and given by a linear function and by power laws, respectively. In addition, the effects of the thermal conductivity gradient have been investigated. Optimal homotopy analysis method (OHAM) is employed to analyze the problem. The effects of the physical applicable parameters such as thermo‐geometric fin, thermal conductivity, and heat transfer mode are analyzed. The OHAM solutions are obtained and validity of obtained solutions is verified by the Runge–Kutta fourth‐order method and numerical simulation. A very good agreement is found between analytical and numerical results. Also for investigation of lateral effects on the accuracy of results, numerical simulation (by Ansis software) is compared with the homotopy analysis method (HAM) and numerical solution (by Runge–Kutta) of the energy balance equation. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21104  相似文献   

16.
A numerical analysis has been carried out to investigate the problem of MHD boundary‐layer flow and heat transfer of a viscous incompressible fluid over a moving vertical permeable stretching sheet with velocity and temperature slip boundary condition. A problem formulation is developed in the presence of radiation, viscous dissipation, and buoyancy force. A similarity transformation is used to reduce the governing boundary‐layer equations to coupled higher‐order nonlinear ordinary differential equations. These equations are solved numerically using the fourth‐order Runge–Kutta method along with shooting technique. The effects of the governing parameters such as Prandtl number, buoyancy parameter, slip parameter, magnetic parameter, Eckert Number, suction, and radiation parameter on the velocity and temperature profiles are discussed and shown by plotting graphs. It is found that the temperature is a decreasing function of the slip parameter ST. The results also indicate that the cooling rate of the sheet can be improved by increasing the buoyancy parameter. In addition the numerical results for the local skin friction coefficient and local Nusselt number are computed and presented in tabular form. The numerical results are compared and found to be in good agreement with previously published results on special cases of the problem. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(5): 412–426, 2014; Published online 3 October 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21086  相似文献   

17.
This paper presents a numerical analysis method for shape optimization of domains with steady‐state heat‐conduction fields considering the temperature dependence of the thermal conductivity coefficient. In this paper, we formulate two shape optimization problems, namely, maximization of thermal dissipation on heat transfer boundaries and minimization of heat‐conduction fields. The shape gradient functions for these shape optimization problems are derived theoretically using the Lagrange multiplier method and formulae of the material derivative. Reshaping is accomplished using the traction method proposed as a solution to the shape optimization problems. The proposed method is validated from the results of two‐dimensional numerical analysis. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20374  相似文献   

18.
Mixed convection heat and mass transfer from a vertical plate embedded in a power‐law fluid‐saturated Darcy porous medium with chemical reaction and radiation effects is studied. The governing partial differential equations are transformed into ordinary differential equations using similarity transformations and then solved numerically using the shooting method. A parametric study of the physical parameters involved in the problem is conducted and a representative set of numerical results is illustrated graphically. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21058  相似文献   

19.
The onset of Darcy‐Brinkman convection in a binary viscoelastic fluid‐saturated sparsely packed porous layer with an internal heat source is studied using both linear and nonlinear stability analyses. The Oldroyd‐B model is employed to describe the rheological behavior of binary fluid. An extended form of the Darcy‐Oldroyd law incorporating Brinkman's correction and time derivative is used to describe the flow through a porous layer. The onset criterion for stationary, oscillatory, and finite amplitude convection is derived analytically. There is a competition between the processes of thermal diffusion, solute diffusion, and viscoelasticity that causes the convection to set in through an oscillatory mode rather than a stationary mode. The effect of internal Rayleigh number, relaxation and retardation parameters, solute Rayleigh number, Darcy number, Darcy‐Prandtl number, and Lewis number on the stability of a system is investigated and is shown graphically. The nonlinear theory based on the truncated representation of the Fourier series method is used to find heat and mass transfer. The transient behavior of the Nusselt and Sherwood numbers is obtained using numerical methods. Some known results are recovered for the particular cases of the present study. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 42(8): 676–703, 2013; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21056  相似文献   

20.
This paper presents an analytical solution of steady‐state heat transfer for laminar, two‐dimensional, and rarefied gas flow in a semi‐infinite microtube. To account for the slip‐flow characteristics of microscale heat transfer, temperature jump condition at the wall has been included in the model while the fluid velocity is assumed to be constant (slug flow). The solution yields closed form expressions for fully‐developed Nusselt numbers in terms of Knudsen number and Prandtl number under both isothermal and isoflux wall conditions. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20263  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号