首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
This paper proposes a new approach to finding the optimum design parameters of the heat recovery steam generator (HRSG) system to maximize the efficiency of the steam turbine (bottom) cycle of the combined cycle power plant (CCPP), but without performing the bottom cycle analysis. This could be achieved by minimizing the unavailable exergy (the sum of the destroyed and the lost exergies) resulted from the heat transfer process of the HRSG system. The present approach is relatively simple and straightforward because the process of the trial-and-error method, typical in performing the bottom cycle analysis for the system optimization, could be avoided. To demonstrate the usefulness of the present method, a single-stage HRSG system was chosen, and the optimum evaporation temperature was obtained corresponding to maximum useful work for given conditions of water and gas temperatures at the inlets of the HRSG system. Results show that the optimum evaporation temperature obtained based on the present exergy analysis appears similar to that based on the bottom cycle analysis. Also shown is the dependency of number of transfer unit (NTU) on the evaporation temperature, which is another important factor in determining the optimum condition when the construction cost is taken into account in addition to the operating cost. The present approach turned out to be a powerful tool for optimization of the single-stage HRSG systems and can easily be extended to multi-stage systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
The paper deals with thermodynamic analysis of cooled gas turbine‐based gas‐steam combined cycle with single, dual, or triple pressure bottoming cycle configuration. The cooled gas turbine analyzed here uses air as blade coolant. Component‐wise non‐dimensionalized exergy destruction of the bottoming cycle has been quantified with the objective to identify the major sources of exergy destruction. The mass of steam generated in different configurations of heat recovery steam generator (HRSG) depends upon the number of steam pressure drums, desired pressure level, and steam temperature. For the selected set of operating parameters, maximum steam has been observed to be generated in the case of triple pressure HRSG = 19 kg/kg and minimum in single pressure HRSG = 17.25 kg/kg. Plant‐efficiency and plant‐specific works are both highest for triple‐pressure bottoming cycle combined cycle. Non‐dimensionalized exergy destruction in HRSG is least at 0.9% for B3P, whereas 1.23% for B2P, and highest at 3.2% for B1P illustrating that process irreversibility is least in the case of B3P and highest in B1P. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
This paper proposes a methodology to identify the most relevant design parameters that impact on the thermal efficiency and the economic results of combined cycle gas turbine power plants. The analysis focuses on the heat recovery steam generator (HRSG) design and more specifically on those operating parameters that have a direct influence on the economic results of the power plant. These results are obtained both at full and part load conditions using a dedicated code capable of simulating a wide number of different plant configurations. Two different thermoeconomic models aimed to select the best design point are proposed and compared: the first one analyzes the generating cost of the energy while the second one analyzes the annual cash flow of the plant. Their objective is to determine whether an increase in the investment in order to improve the thermal efficiency is worth from an economic point of view. Both models and the different HRSG configurations analysed are compared in the results section. Some parametric analysis show how the design parameters might be varied in order to improve the power plant efficiency or the economic results. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Combined‐cycle power plants are currently preferred for new power generation plants worldwide. The performance of gas‐turbine engines can be enhanced at constant turbine inlet temperatures with the addition of a bottoming waste‐heat recovery cycle. This paper presents a study on the energy and exergy analysis of a novel hybrid Combined‐Nuclear Power Plant (HCNPP). It is thus interesting to evaluate the possibility of integrating the gas turbine with nuclear power plant of such a system, utilizing virtually free heat. The integration arrangement of the AP600 NPP steam cycle with gas turbines from basic thermodynamic considerations will be described. The AP600 steam cycle modifications to combine with the gas turbines can be applied to other types of NPP. A simple modeling of Alstom gas turbines cycle, one of the major combined‐cycle steam turbines manufacturers, hybridized with a nuclear power plant from energetic and exergetic viewpoint is provided. The Heat Recovery Steam Generator (HRSG) has single steam pressure without reheat, one superheater and one economizer. The thermodynamic parameters of the working fluids of both the gas and the steam turbines cycles are analyzed by modeling the thermodynamic cycle using the Engineering Equation Solver (EES) software. In case of hybridizing, the existing Alstom gas turbine with a pressurized water nuclear power plants using the newly proposed novel solution, we can increase the electricity output and efficiency significantly. If we convert a traditional combined cycle to HCNPP unit, we can achieve about 20% increase in electricity output. This figure emphasizes the significance of restructuring our power plant technology and exploring a wider variety of HCNPP solutions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents exergy analysis of a conceptualized combined cogeneration plant that employs pressurized oxygen blown coal gasifier and high‐temperature, high‐pressure solid oxide fuel cell (SOFC) in the topping cycle and a bottoming steam cogeneration cycle. Useful heat is supplied by the pass‐out steam from the steam turbine and also by the steam raised separately in an evaporator placed in the heat recovery steam generator (HRSG). Exergy analysis shows that major part of plant exergy destruction takes place in gasifier and SOFC while considerable losses are also attributed to gas cooler, combustion chamber and HRSG. Exergy losses are found to decrease with increasing pressure ratio across the gas turbine for all of these components except the gas cooler. The fuel cell operating temperature influences the performance of the equipment placed downstream of SOFC. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Heat recovery steam generator (HRSG) is a major component of a combined cycle power plant (CCPP). This equipment is particularly subject to severe thermal stress especially during cold start‐up period. Hence, it is important to predict the operational parameters of HRSGs such as temperature of steam, water, hot gas and tube metal of heating elements as well as pressure change in drums during transient and steady‐state operation. These parameters may be used for estimating thermal and mechanical stresses which are important in HRSG design and operation. In this paper, the results of a developed thermal model for predicting the working conditions of HRSG elements during transient and steady‐state operations are reported. The model is capable of analysing arbitrary number of pressure levels and any number of elements such as superheater, evaporator, economizer, deaerator, desuperheater, reheater, as well as duct burners. To assess the correct performance of the developed model two kinds of data verification were performed. In the first kind of data verification, the program output was compared with the measured data collected from a cold start‐up of an HRSG at Tehran CCPP. The variations of gas, water/steam and metal temperatures at various sections of HRSG, and pressure in drums were among the studied parameters. Mean differences of about 3.8% for temperature and about 9.2% for pressure were observed in this data comparison. In the second kind of data verification, the steady‐state numerical output of the model was checked with the output of the well‐known commercial software. An average difference of about 1.5% was found between the two latter groups of data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
This paper has proposed an improved liquefied natural gas (LNG) fuelled combined cycle power plant with a waste heat recovery and utilization system. The proposed combined cycle, which provides power outputs and thermal energy, consists of the gas/steam combined cycle, the subsystem utilizing the latent heat of spent steam from the steam turbine to vaporize LNG, the subsystem that recovers both the sensible heat and the latent heat of water vapour in the exhaust gas from the heat recovery steam generator (HRSG) by installing a condensing heat exchanger, and the HRSG waste heat utilization subsystem. The conventional combined cycle and the proposed combined cycle are modelled, considering mass, energy and exergy balances for every component and both energy and exergy analyses are conducted. Parametric analyses are performed for the proposed combined cycle to evaluate the effects of several factors, such as the gas turbine inlet temperature (TIT), the condenser pressure, the pinch point temperature difference of the condensing heat exchanger and the fuel gas heating temperature on the performance of the proposed combined cycle through simulation calculations. The results show that the net electrical efficiency and the exergy efficiency of the proposed combined cycle can be increased by 1.6 and 2.84% than those of the conventional combined cycle, respectively. The heat recovery per kg of flue gas is equal to 86.27 kJ s?1. One MW of electric power for operating sea water pumps can be saved. The net electrical efficiency and the heat recovery ratio increase as the condenser pressure decreases. The higher heat recovery from the HRSG exit flue gas is achieved at higher gas TIT and at lower pinch point temperature of the condensing heat exchanger. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
The combined-cycle gas and steam turbine power plant presents three main pieces of equipment: gas turbines, steam turbines and heat recovery steam generator (HRSG). In case of HRSG failure the steam cycle is shut down, reducing the power plant output. Considering that the technology for design, construction and operation of high capacity HRSGs is quite recent its availability should be carefully evaluated in order to foresee the performance of the power plant.This study presents a method for reliability and availability evaluation of HRSGs installed in combined-cycle power plant. The method’s first step consists in the elaboration of the steam generator functional tree and development of failure mode and effects analysis. The next step involves a reliability and availability analysis based on the time to failure and time to repair data recorded during the steam generator operation. The third step, aiming at availability improvement, recommends the fault-tree analysis development to identify components the failure (or combination of failures) of which can cause the HRSG shutdown. Those components maintenance policy can be improved through the use of reliability centered maintenance (RCM) concepts. The method is applied on the analysis of two HRSGs installed in a 500 MW combined-cycle power plant.  相似文献   

9.
对联合循环电站燃气轮机选型、蒸汽系统的选择、余热锅炉和汽轮机选型、机组轴系配置、动力岛布置、主要辅助设备的选择等方面进行了分析研究,为联合循环电站的设计和研究方向提供了建议。  相似文献   

10.
Detailed thermodynamic, kinetic, geometric, and cost models are developed, implemented, and validated for the synthesis/design and operational analysis of hybrid SOFC–gas turbine–steam turbine systems ranging in size from 1.5 to 10 MWe. The fuel cell model used in this research work is based on a tubular Siemens-Westinghouse-type SOFC, which is integrated with a gas turbine and a heat recovery steam generator (HRSG) integrated in turn with a steam turbine cycle. The current work considers the possible benefits of using the exhaust gases in a HRSG in order to produce steam which drives a steam turbine for additional power output. Four different steam turbine cycles are considered in this research work: a single-pressure, a dual-pressure, a triple pressure, and a triple pressure with reheat. The models have been developed to function both at design (full load) and off-design (partial load) conditions. In addition, different solid oxide fuel cell sizes are examined to assure a proper selection of SOFC size based on efficiency or cost. The thermoeconomic analysis includes cost functions developed specifically for the different system and component sizes (capacities) analyzed. A parametric study is used to determine the most viable system/component syntheses/designs based on maximizing total system efficiency or minimizing total system life cycle cost.  相似文献   

11.
The effect of elevated inlet air temperature and relative humidity on a gas turbine (GT) cogeneration system performance was investigated. The analysis was carried out on a GT of a capacity 171 MW at ISO condition, which is integrated with a dual pressure heat recovery steam generator (HRSG), the cogeneration system had been tested under Kuwait summer climate conditions. A computational model was developed and solved using engineering equation solver professional package to investigate the performance of a dual pressure GT‐HRSG system. The suggested HRSG is capable of producing high‐pressure superheated steam at 150 bar and 510°C to operate a power generation steam turbine cycle, and a medium pressure saturated steam at 15 bar to run a thermal vapor compression (TVC) desalination system. In this research, the influence of elevated inlet air temperature and relative humidity on the energy assessment of the suggested cogeneration system was thoroughly investigated. Results indicated that operating GT under elevated values of inlet air temperatures is characterized by low values of net power and thermal efficiency. At elevated inlet air temperatures, increasing relative humidity has a small positive impact on GT cycle net power and thermal efficiency. Integrating the GT with HRSG to generate steam for power generation and process heat tends to increase energy utilization factor of the system at elevated inlet air temperatures. Increasing inlet air temperature plays a negative impact on power to heat ratio (PHR), while relative humidity has no effect on PHR. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Many F class gas turbine combined cycle(GTCC)power plants are built in China at present because of less emis-sion and high efficiency.It is of great interest to investigate the efficiency improvement of GTCC plant.A com-bined cycle with three-pressure reheat heat recovery steam generator(HRSG)is selected for study in this paper.In order to maximize the GTCC efficiency,the optimization of the HRSG operating parameters is performed.Theoperating parameters are determined by means of a thermodynamic analysis,i.e.the minimization of exergylosses.The influence of HRSG inlet gas temperature on the steam bottoming cycle efficiency is discussed.Theresult shows that increasing the HRSG inlet temperature has less improvement to steam cycle efficiency when itis over 590℃.Partial gas to gas recuperation in the topping cycle is studied.Joining HRSG optimization with theuse of gas to gas heat recuperation,the combined plant efficiency can rise up to 59.05% at base load.In addition,the part load performance of the GTCC power plant gets much better.The efficiency is increased by 2.11% at75% load and by 4.17% at 50% load.  相似文献   

13.
This work presents an analysis of the dynamic behaviour of a HRSG (heat recovery steam generator) during start‐up. A calculation program based on a quasi‐steady method is constructed. A typical high‐pressure HRSG is designed conceptually and analysis is performed to examine the influence of the gas inlet condition of the HRSG on its start‐up behaviour. Effects of the gas turbine operation mode and the gas bypass are analysed. In addition, the water level control during start‐up, which is one of the most important facts in the real plant operation, is simulated. Through a parametric calculation, the effect of the control parameters on the start‐up behaviour is analysed and examples of optimum control are demonstrated. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
Combined cycle power plants (CCPPs) have an important role in power generation. The objective of this paper is to evaluate irreversibility of each part of Neka CCPP using the exergy analysis. The results show that the combustion chamber, gas turbine, duct burner and heat recovery steam generator (HRSG) are the main sources of irreversibility representing more than 83% of the overall exergy losses. The results show that the greatest exergy loss in the gas turbine occurs in the combustion chamber due to its high irreversibility. As the second major exergy loss is in HRSG, the optimization of HRSG has an important role in reducing the exergy loss of total combined cycle. In this case, LP‐SH has the worst heat transfer process. The first law efficiency and the exergy efficiency of CCPP are calculated. Thermal and exergy efficiencies of Neka CCPP are 47 and 45.5% without duct burner, respectively. The results show that if the duct burner is added to HRSG, these efficiencies are reduced to 46 and 44%. Nevertheless, the results show that the CCPP output power increases by 7.38% when the duct burner is used. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
配PG9171E燃机余热锅炉主蒸汽参数的优化计算   总被引:1,自引:0,他引:1  
联合循环系统中余热锅炉主蒸汽参数的确定 ,直接影响到蒸汽循环系统的性能和整个联合循环装置的效率。以某电厂烧重油PG91 71E燃机联合循环蒸汽循环系统为对象 ,建立了余热锅炉主蒸汽参数优化的热工模型。同时结合余热锅炉的设计 ,分别对主蒸汽压力、温度进行了优化计算。计算结果与国外公司的推荐数据完全一致 ,表明建立的模型正确 ,选定的优化约束条件合理 ,可供联合循环工程设计参考。  相似文献   

16.
Optimization is an important method for improving the efficiency and power of the combined cycle. In this paper, the triple‐pressure steam‐reheat gas‐reheat gas‐recuperated combined cycle that uses steam for cooling the first gas turbine (the regular steam‐cooled cycle) was optimized relative to its operating parameters. The optimized cycle generates more power and consumes more fuel than the regular steam‐cooled cycle. An objective function of the net additional revenue (the saving of the optimization process) was defined in terms of the revenue of the additional generated power and the costs of replacing the heat recovery steam generator (HRSG) and the costs of the additional operation and maintenance, installation, and fuel. Constraints were set on many operating parameters such as air compression ratio, the minimum temperature difference for pinch points (δTppm), the dryness fraction at steam turbine outlet, and stack temperature. The net additional revenue and cycle efficiency were optimized at 11 different maximum values of turbine inlet temperature (TIT) using two different methods: the direct search and the variable metric. The optima were found at the boundaries of many constraints such as the maximum values of air compression ratio, turbine outlet temperature (TOT), and the minimum value of stack temperature. The performance of the optimized cycles was compared with that for the regular steam‐cooled cycle. The results indicate that the optimized cycles are 1.7–1.8 percentage points higher in efficiency and 4.4–7.1% higher in total specific work than the regular steam‐cooled cycle when all cycles are compared at the same values of TIT and δTppm. Optimizing the net additional revenue could result in an annual saving of 21 million U.S. dollars for a 439 MW power plant. Increasing the maximum TOT to 1000°C and replacing the stainless steel recuperator heat exchanger of the optimized cycle with a super‐alloys‐recuperated heat exchanger could result in an additional efficiency increase of 1.1 percentage point and a specific work increase of 4.8–7.1%. The optimized cycles were about 3.3 percentage points higher in efficiency than the most efficient commercially available H‐system combined cycle when compared at the same value of TIT. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The paper compares the thermodynamic performance of MS9001 gas turbine based cogeneration cycle having a two-pressure heat recovery steam generator (HRSG) for different blade cooling means. The HRSG has a steam drum generating steam to meet coolant requirement, and a second steam drum generates steam for process heating. Gas turbine stage cooling uses open loop cooling or closed loop cooling schemes. Internal convection cooling, film cooling and transpiration cooling techniques employing steam or air as coolants are considered for the performance evaluation of the cycle. Cogeneration cycle performance is evaluated using coolant flow requirements, plant specific work, fuel utilisation efficiency, power-to-heat-ratio, which are function of compressor pressure ratio and turbine inlet temperature, and process steam drum pressure. The maximum and minimum values of power-to-heat ratio are found with steam internal convection cooling and air internal convection cooling respectively whereas maximum and minimum values of fuel utilisation efficiency are found with steam internal convection cooling and closed loop steam cooling. The analysis is useful for power plant designers to select the optimum compressor pressure ratio, turbine inlet temperature, fuel utilisation efficiency, power-to-heat ratio, and appropriate cooling means for a specified value of plant specific work and process heating requirement.  相似文献   

18.
A thermal analysis of two combined cycle power plants is performed. The steam injection system in the combustion chamber constitutes the main difference between the two designs. For the first power plant (design 1) the injected steam is generated in the HRSG. While for second power plant (design 2) this steam is provided using a heat recovery system installed at the compressor outlet. The steam turbine cycle engenders two pressure extraction levels connected to open feed-water heaters. The steam injection in the combustion chamber improves the overall combined cycle efficiency if this steam is generated outside the HRSG.The increase of the ambient temperature affects the overall cycle efficiency.The optimum thermal efficiency, for any temperature value during the year, may be obtained for suitable margin of steam injection ratio. The second design presents better overall efficiency then the first one. In winter season (Tam = 15 °C), the overall cycle efficiency is about 54.45% for a range of steam injection ratio within 11.8 and 14%. While in summer season (Tam = 35 °C) and for the same cycle efficiency, the required range of steam injection ratio is between 18.5 and 18.8%.  相似文献   

19.
Increasing the inlet temperature of gas turbine (TIT) and optimization are important methods for improving the efficiency and power of the combined cycle. In this paper, the triple‐pressure steam‐reheat gas‐reheat recuperated combined cycle (the Regular Gas‐Reheat cycle) was optimized relative to its operating parameters, including the temperature differences for pinch points (δTPP). The optimized triple‐pressure steam‐reheat gas‐reheat recuperated combined cycle (the Optimized cycle) had much lower δTPP than that for the Regular Gas‐Reheat cycle so that the area of heat transfer of the heat recovery steam generator (HRSG) of the Optimized cycle had to be increased to keep the same rate of heat transfer. For the same mass flow rate of air, the Optimized cycle generates more power and consumes more fuel than the Regular Gas‐Reheat cycle. An objective function of the net additional revenue (the saving of the optimization process) was defined in terms of the revenue of the additional generated power and the costs of replacing the HRSG and the additional fuel. Constraints were set on many operating parameters such as the minimum temperature difference for pinch points (δTPPm), the steam turbines inlet temperatures and pressures, and the dryness fraction at steam turbine outlet. The net additional revenue was optimized at 11 different maximum values of TIT using two different methods: the direct search and variable metric. The performance of the Optimized cycle was compared with that for the Regular Gas‐Reheat cycle and the triple‐pressure steam‐reheat gas‐reheat recuperated reduced‐irreversibility combined cycle (the Reduced‐Irreversibility cycle). The results indicate that the Optimized cycle is 0.17–0.35 percentage point higher in efficiency and 5.3–6.8% higher in specific work than the Reduced‐Irreversibility cycle, which is 2.84–2.91 percentage points higher in efficiency and 4.7% higher in specific work than the Regular Gas‐Reheat cycle when all cycles are compared at the same values of TIT and δTPPm. Optimizing the net additional revenue could result in an annual saving of 33.7 million US dollars for a 481 MW power plant. The Optimized cycle was 3.62 percentage points higher in efficiency than the most efficient commercially available H‐system combined cycle when compared at the same value of TIT. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
200MW级IGCC电厂动力岛主机特性分析及参数优化   总被引:1,自引:0,他引:1  
本文分析了采用水煤浆气化技术的200MW级IGCC电厂中动力岛主机设备燃气轮机、余热锅炉和蒸汽轮机的特点,通过对汽水循环型式、主蒸汽压力和温度、排烟温度等参数的匹配和优化,提高了机组的效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号