首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, transient two‐dimensional mixed convection of nanofluids in the entrance region of a vertical channel has been studied carefully. The geometry under consideration consisted of a parallel‐plate channel partly filled with a porous medium with a constant wall temperature. In the free flow region, the two‐dimensional flow field has been governed by the Navier–Stokes equations. The general formulation of the momentum equations accounting for the inertial and the viscous effects in the presence of a porous medium has been used. Viscous dissipation effects have also been incorporated in the thermal energy equation. Effects of Brownian diffusion and thermophoresis have also been included for nanoparticles in the nanofluid. The governing equations have been given in terms of the stream function‐vorticity formulation and have been non‐dimensionalized and then solved numerically subject to appropriate boundary conditions. The characteristics of the flow and temperature fields have been presented in the terms of mixed‐convection parameter (GR), Brinkman number (Br), Darcy number (Da), Lewis number (Le), and other important parameters. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(7): 607–627, 2014; Published online 21 November 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21099  相似文献   

2.
The key purpose of this article is to examine magnetohydrodynamics flow, generative/absorptive heat, and mass transfer of nanofluid flow past a wedge in the presence of viscous dissipation through a porous medium. The investigation is completely theoretical, and the present model expresses the influence of Brownian motion and thermophoresis using the nanofluid Buongiorno model. The fundamental model of partial differential equations is reframed into the structure of ordinary differential equations implementing the nondimensional similarity transformation, which are tackled through the fourth–fifth-order Runge–Kutta–Fehlberg algorithm together with the shooting scheme. The analysis of sundry nondimensional controlling parameters, such as magnetic parameter, Eckert number, heat generation/absorption parameter, porosity parameter, Brownian motion parameter, and thermophoresis parameter on velocity, temperature, and concentration profiles are discussed graphically. The effects of the physical factors on the rate of momentum and heat and mass transfer are also determined with appropriate analysis in terms of skin friction, Nusselt number, and Sherwood number. The outcomes illustrate that the local Nusselt number and local Sherwood number are reduced for higher values of the thermophoresis parameter. Besides, it is found that higher estimations of heat generation/absorption and viscous dissipation parameters increase temperature. Moreover, it is found that the temperature profile increases with the involvement of the Brownian motion parameter, while an opposite trend is observed in the concentration profile. A comparison is also provided for limiting cases to authenticate our obtained results.  相似文献   

3.
This work studies the free convection heat transfer over a truncated cone embedded in a porous medium saturated by a non-Newtonian power-law nanofluid with constant wall temperature and constant wall nanoparticle volume fraction. The effects of Brownian motion and thermophoresis are incorporated into the model for nanofluids. A coordinate transformation is performed, and the obtained nonsimilar equations are solved by the cubic spline collocation method. The effects of the power-law index, Brownian motion parameter, thermophoresis parameter and buoyancy ratio on the temperature, nanoparticle volume fraction and velocity profiles are discussed. The reduced Nusselt numbers are plotted as functions of the power-law index, thermophoresis parameter, Brownian parameter, Lewis number, and buoyancy ratio. Results show that increasing the thermophoresis parameter or the Brownian parameter tends to decrease the reduced Nusselt number. Moreover, the reduced Nusselt number increases as the power-law index is increased.  相似文献   

4.
This work studies the natural convection boundary layer flow over a truncated cone embedded in a porous medium saturated by a nanofluid with constant wall temperature and constant wall nanoparticle volume fraction. The effects of Brownian motion and thermophoresis are incorporated into the model for nanofluids. A suitable coordinate transformation is performed, and the obtained nonsimilar equations are solved by the cubic spline collocation method. The effect of the Brownian motion parameter and thermophoresis parameter on the temperature, nanoparticle volume fraction and velocity profiles are discussed. The effects of the thermophoresis parameter, Brownian parameter, Lewis number, and buoyancy ratio on the local Nusselt number have been studied. Results show that an increase in the thermophoresis parameter or the Brownian parameter tends to decrease the local Nusselt number. Moreover, the local Nusselt number increases as the buoyancy ratio or the Lewis number is decreased.  相似文献   

5.
The current study examines mixed (combined) convection stagnation‐point couple stress nanofluid over a stretched cylinder of variable thermal conductivity in the presence of viscous dissipation and internal heat source. The basic governing partial differential equations have been converted to coupled nonlinear differential equations by using adequate similarity transformations. By applying semi‐analytic technique (BVPh2.0), the equivalent ordinary differential equations are successfully solved and validated with a bvp4c solver. Graphs are presented to study the impact of various parameters on axial velocity, temperature, and volumetric nanofluid concentration profiles. The coefficient of skin friction (quantifying resistance) and the rate of heat and mass transfer on the surface due to flow variables are computed and explained. The axial velocity and momentum thickness are decreased with increasing couple stress parameter, whereas the reverse trend is noted with mixed convection and buoyancy ratio parameters. The temperature distribution increases for increasing Brownian motion and thermal conductivity parameter, whereas it decreases for increasing stagnation parameter.  相似文献   

6.
Present research article investigate the heat and mass transfer characteristics of unsteady magnetohydrodynamic Casson nanofluid flow between two parallel plates under the influence of viscous dissipation and first order homogeneous chemical reaction effects. The impacts of thermophoresis and Brownian motion are accounted in the nanofluid model to disclose the salient features of heat and mass transport phenomena. The present physical problem is examined under the presence of Lorentz forces to investigate the effects of magnetic field. Further, the viscous and Joule dissipation effects are considered to describe the heat transfer process. The non‐Newtonian behaviour of Casson nanofluid is distinguished from those of Newtonian fluids by considering the well‐established rheological Casson fluid model. The two‐dimensional partial differential equations governing the unsteady squeezing flow of Casson nanofluid are coupled and highly nonlinear in nature. Thus, similarity transformations are imposed on the conservation laws to obtain the nonlinear ordinary differential equations. Runge‐Kutta fourth order integration scheme with shooting method and bvp4c techniques have been used to solve the resulting nonlinear flow equations. Numerical results have been obtained and presented in the form of graphs and tables for various values of physical parameters. It is noticed from present investigation that, the concentration field is a decreasing function of thermophoresis parameter. Also, concentration profile enhances with raising Brownian motion parameter. Further, the present numerical results are compared with the analytical and semianalytical results and found to be in good agreement.  相似文献   

7.
This study investigates the Darcy-Forchheimer flow of Sisko nanofluid with viscous dissipation and convective thermal boundary conditions. The Buongiorno two-component nanoscale model is deployed for nanofluid characteristics, which take into account the physical phenomena responsible for the slip velocity between the base fluid and the nanoparticles such as thermophoresis and Brownian diffusion. The Darcy- Forchheimer model employed here includes the effects of boundary and inertial forces. The nonlinear coupled partial differential equations governing the fluid flow are converted into the nonlinear ordinary differential equations by choosing suitable similarity transformations. The nondimensionalized differential equations are then solved utilizing the finite difference based bvp-4c tool in MATLAB software. The numerical solutions are presented graphically to demonstrate the impact of involved physical parameters on temperature, velocity, and nanoparticle volume fraction. Moreover, the rate of heat transfer, mass transfer, and skin friction are physically interpreted. The present investigation reveals that the Darcy number enhances the velocity and depleted the temperature while the Forchheimer number depleted the velocity and enhances the temperature of the Sisko nanofluid. The thermophoresis, Brownian diffusion parameters, and the Forchheimer number contribute to the reduction in the heat transfer rate while the Darcy number enhances it. The skin friction at the wall can be controlled by controlling the values of Darcy number.  相似文献   

8.
The onset of double‐diffusive nanofluid convection in a fluid‐saturated horizontal porous layer is studied with thermal conductivity and viscosity dependent on the nanoparticle volume fraction. The Darcy model has been used for the porous medium, while the nanofluid incorporates the effects of Brownian motion along with thermophoresis. The nanofluid is assumed to be diluted and this enables the porous medium to be treated as a weakly heterogeneous medium with variation in the vertical direction of conductivity and viscosity. In addition, the thermal energy equation includes regular diffusion and cross diffusion terms. The linear stability analysis is based on the normal mode technique, while for nonlinear analysis, minimal representation of the truncated Fourier series representation involving only two terms has been used. It is found that for the stationary mode the Soret parameter, Dufour parameter, viscosity ratio, and conductivity ratio have a stabilizing effect, while the solutal Rayleigh number destabilizes the system. For the oscillatory mode, the Soret parameter, Dufour parameter, and viscosity ratio have a stabilizing effect while the solutal Rayleigh number and conductivity ratio destabilize the system. For steady finite amplitude motions, the heat and mass transport decreases with an increase in the values of the Dufour parameter and solutal Rayleigh number. The Soret parameter enhances the solute concentration Nusselt number while it retards the thermal Nusselt number and concentration Nusselt number. The viscosity ratio and conductivity ratio enhances the heat and mass transports. We also study the effect of time on transient Nusselt numbers which is found to be oscillatory when time is small. However, when time becomes very large, all three transient Nusselt values approach a steady value. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(7): 628–652, 2014; Published online 11 November 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21102  相似文献   

9.
The present study considers two‐dimensional mathematical modeling of non‐Newtonian nanofluid hemodynamics with heat and mass transfer in a stenosed coronary artery in the presence of a radial magnetic field. The second‐grade differential viscoelastic constitutive model is adopted for blood to mimic non‐Newtonian characteristics, and blood is considered to contain a homogenous suspension of nanoparticles. The Vogel model is employed to simulate the variation of blood viscosity as a function of temperature. The governing equations are an extension of the Navier‐Stokes equations with linear Boussinesq's approximation and Buongiorno's nanoscale model (which simulates both heat and mass transfer). The conservation equations are normalized by employing appropriate nondimensional variables. It is assumed that the maximum height of the stenosis is small in comparison with the radius of the artery, and, furthermore, that the radius of the artery and length of the stenotic region are of comparable magnitude. To study the influence of vessel geometry on blood flow and nanoparticle transport, variation in the design and size of the stenosis is considered in the domain. The transformed equations are solved numerically by means of the finite element method based on the variational approach and simulated using the FreeFEM++ code. A detailed grid‐independence study is included. Blood flow, heat, and mass transfer characteristics are examined for the effects of selected geometric, nanoscale, rheological, viscosity, and magnetic parameters, that is, stenotic diameter (d), viscoelastic parameter (), thermophoresis parameter (), Brownian motion parameter (), and magnetic body force parameter (M) at the throat of the stenosis and throughout the arterial domain. The velocity, temperature, and nanoparticle concentration fields are also visualized through instantaneous patterns of contours. An increase in magnetic and thermophoresis parameters is found to enhance the temperature, nanoparticle concentration, and skin‐friction coefficient. Increasing Brownian motion parameter is observed to accelerate the blood flow. Narrower stenosis significantly alters the temperature and nanoparticle distributions and magnitudes. The novelty of the study relates to the combination of geometric complexity, multiphysical nanoscale, and thermomagnetic behavior, and also the simultaneous presence of biorheological behavior (all of which arise in actual cardiovascular heat transfer phenomena) in a single work with extensive visualization of the flow, heat, and mass transfer characteristics. The simulations are relevant to the diffusion of nano‐drugs in magnet‐targeted treatment of stenosed arterial disease.  相似文献   

10.
A boundary layer analysis has been presented for the mixed convection of water at 4°C over a vertical plate embedded in a porous medium. The Robin or convective boundary condition at the surface has been considered where the heat lost from the surface is the product of a heat transfer coefficient and the temperature difference between the surface and the free stream. The governing non‐similar boundary layer equations for both the forced and free convection dominated regimes were solved numerically by means of an implicit finite difference method. The friction factor and dimensionless heat transfer rate (Nusselt number) are presented for several values of the dimensionless heat transfer coefficient and buoyancy parameter. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21022  相似文献   

11.
In this paper, the steady fully developed non‐Darcy mixed convection flow of a nanofluid in a vertical channel filled with a porous medium with different viscous dissipation models is analyzed. The Brinkman‐Forchheimer extended Darcy model is used to describe the fluid flow pattern in the channel. The transport equations for a nanofluid are solved analytically using the seminumerical‐analytical method known as differential transformation method, and numerically with the Runge‐Kutta shooting method. Finally, the influence of pertinent parameters, such as solid volume fraction, different nanoparticles, mixed convection parameter, Brinkman number, Darcy number, and inertial parameter on the velocity and temperature fields are shown graphically. The results show that velocity and temperature are enhanced when the mixed convection parameter, Brinkman number, and Darcy number increases whereas solid volume fraction and inertial parameter decreases the velocity and temperature fields. The obtained results show that the nanofluid enhances the heat transfer process significantly.  相似文献   

12.
This analysis intends to address the coupled effect of phase change heat transfer, thermal radiation, and viscous heating on the MHD flow of an incompressible chemically reactive nanofluid in the vicinity of the stagnation point toward the stretching surface, taking a Jeffrey fluid as the base fluid. Convergent analytical solutions for the nonlinear boundary layer equations are obtained by the successive application of scaling variables and the highly efficacious homotopy analysis method. Error analysis is implemented to endorse the convergence of the solutions. Through parametric examination, influence of various physical parameters occurring in analysis of the profiles of velocity, temperature, and nanoparticle concentration, coefficient of surface drag, rates of mass and heat transfer is explored pictorially. The Deborah number and the melting parameter are found to enhance velocity, and the associated momentum boundary layers are thicker, whereas the magnetic field depreciates the flow rate. Temperature is observed to enhance with the thermophoresis parameter, Prandtl number and Eckert number, whereas a reduction is seen with the thermal radiation parameter and Brownian motion parameter. Nanoparticle concentration is depleted by the chemical reaction parameter, the thermophoresis parameter, and the Lewis number.  相似文献   

13.
The natural convection heat transfer in a cavity filled with three layers of solid, porous medium, and free fluid is addressed. The porous medium and free fluid layers are filled with a nanofluid. The porous layer is modeled using the local thermal nonequilibrium (LTNE) model, considering the temperature difference between the solid porous matrix and the nanofluid phases. The nanofluid is modeled using the Buongiorno’s model incorporating the thermophoresis and Brownian motion effects. The governing equations are transformed into a set of nondimensional partial differential equations, and then solved using finite element method in a nonuniform grid. The effects of various nondimensional parameters are discussed. The results showed that the Brownian motion and thermophoresis effects result in significant concentration gradients of nanoparticles in the porous and free fluid layers. The increase in Rayleigh (Ra), Darcy (Da), the thermal conductivity ratios for the solid wall and solid porous matrix, i.e., Kr and Rk, enhanced the average Nusselt number. The increase in the convection interaction heat transfer parameter between the solid porous matrix and the nanofluid in the pores (H) increases the average Nusselt number in the solid porous matrix but decreases the average Nusselt number in the nanofluid phase of the porous layer.  相似文献   

14.
In this article, the problem of combined forced and free convection in vertical porous and regular channels for both regular fluids and nanofluids has been solved using the CFD technique in the entrance regions of momentum and heat transfer taking into account the influences of viscous heating and inertial force. In this regard, various types of viscous dissipation models reported in the literature such as the Darcy model, the power of the drag force model, and the clear fluid‐compatible model were applied. In the case of nanofluid flow, both the Brownian and thermophoresis molecular transfer mechanisms were considered. The dimensionless distributions of velocity, temperature, and the volume fraction of nanoparticles were determined in terms of corresponding dimensionless numbers such as the Grashof, Reynolds, Forchheimer, Brinkman, and Darcy numbers. The predicted results were validated using fully‐developed distributions of velocity and temperature. In addition, the influences of the Grashof number value on the temperature and velocity distributions in the entrance and fully‐developed regions were examined carefully. In addition, temperature and velocity distributions of nanofluids and regular fluids in porous and regular channels were compared. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(3): 243–269, 2014; Published online 30 September 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21079  相似文献   

15.
This work studies the free convection boundary layer flow over a horizontal cylinder of elliptic cross section in porous media saturated by a nanofluid with constant wall temperature and constant wall nanoparticle volume fraction. The effects of Brownian motion and thermophoresis are incorporated into the model for nanofluids. A coordinate transformation is performed, and the obtained nonsimilar governing equations are then solved by the cubic spline collocation method. The effects of the Brownian motion parameter and thermophoresis parameter on the profiles of the temperature, nanoparticle volume fraction and velocity profiles are presented. The local Nusselt number is presented as a function of the thermophoresis parameter, Brownian parameter, Lewis number and the aspect ratio when the major axis of the elliptical cylinder is vertical (slender orientation) and horizontal (blunt orientation). Results show that the local Nusselt number is increased as the thermophoresis parameter or the Brownian parameter is decreased. The local Nusselt number increases as the buoyancy ratio or the Lewis number is decreased. Moreover, the local Nusselt number of the elliptical cylinder with slender orientation is higher than those of the elliptical cylinder with blunt orientation over the lower half cylinder.  相似文献   

16.
The present article examines the Sisko nanofluid flow and heat transfer through a porous medium due to a stretching cylinder using Buongiorno's model for nanofluids. Suitable similarity transformations are used to transform the governing boundary layer equations of fluid flow into nonlinear ordinary differential equations. The finite difference method is used to solve coupled nonlinear differential equations with MATLAB software. The impact of different parameters viz., the Sisko material parameter, porosity parameter, curvature parameter, thermophoresis parameter, and Brownian diffusion parameter on the velocity and temperature distribution are presented graphically. Moreover, the effect of the involved parameters on the heat transfer rate is also studied and presented through table values. It is noticed from the numerical values that the porosity parameter reduces the velocity while enhancing the temperature. The curvature parameter enhances the velocity throughout the fluid regime and reduces the temperature near the surface while enhancing the temperature far away from the surface. The study reveals that the thermophoresis and Brownian diffusion parameters that characterize the nanofluid flow reduce the wall heat transfer rate, while the curvature parameter enhances it. This investigation of wall heating/cooling has essential applications in solar porous water absorber systems, chemical engineering, metallurgy, material processing, and so forth.  相似文献   

17.
In this study, the aim is to find the numerical solutions of steady, two-dimensional, incompressible, viscous, electrically conducting magnetohydrodynamic (MHD) boundary-layer nanofluid flow towards a vertical cone in the presence of thermal diffusion, diffusion thermo, thermophoresis, and Brownian motion effects subject to porous medium and convective boundary condition. For this investigation, the method of similarity transformations is used for the objective of converting nonlinear partial differential equations into the system of ordinary differential equations. Approximate solutions are obtained using a numerical method of the Runge–Kutta method with the shooting technique for the flow, heat, and mass transfer equations together with boundary conditions. For this flow, the impact of various engineering parameters on MHD, thermal, and solutal boundary layers is investigated and the results are displayed graphically. In addition, the numerical values of the local skin-friction coefficient, rate of heat transfer, and rate of mass transfer coefficients are calculated, and the results are presented numerically. Finally, the comparison with previously published work is made and found in good agreement.  相似文献   

18.
The present article investigates the influence of Dufour and Soret effects on mixed convection heat and mass transfer over a vertical plate in a doubly stratified fluid‐saturated porous medium. The plate is maintained at a uniform and constant wall heat and mass fluxes. The Darcy–Forchheimer model is employed to describe the flow in porous medium. The nonlinear governing equations and their associated boundary conditions are initially transformed into dimensionless forms. The resulting system of nonlinear partial differential equations is then solved numerically by the Keller‐box method. The variation of the dimensionless velocity, temperature, concentration, heat, and mass transfer rates for different values of governing parameters involved in the problem are analyzed and presented graphically. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21114  相似文献   

19.
The resent development of research in the field of nano technology introduced hybrid nanofluids which are advanced classes of fluids with augmented thermal properties and it gives better results comparing to regular nanofluid. The aim of the present work is to study the significant effects of variable viscosity and viscous dissipation on a porous stretching sheet in the presence of hybrid nanofluid and radiative heating. In this model, two types of nanoparticles, namely copper (Cu) and alumina oxide (Al2O3), are suspended in the base fluid H2O to form a hybrid nanoliquid. The novelty of this study is to introduce variable viscosity along with natural convection in the momentum equation and viscous dissipation in the energy equation. Mathematical modeling is employed in this study, whereby partial differential equations for the fluid flow are constructed and transformed to a set of ordinary differential equations, and hence resolved computationally by Runge‐Kutta‐Fehlberg method along with shooting scheme. The most important results for relevant parameters concerning the flow heat measure, surface drag, and heat transfer coefficients are thoroughly examined and presented graphically for both Cu‐Al2O3/water hybrid nanofluids. There is an increase in hybrid nanofluid velocity profile with mounting values of λ , and the Cu‐water nanofluid converges to the boundary more quickly than the hybrid nanofluid due to the occurrence of variable viscosity. The results concluded that the Nusselt number of the viscous fluid is lower than that of the nanofluid and hence the hybrid nanofluid (ie, heat transfer rate: normal fluid < nanofluid < hybrid nanofluid). The outcomes of present investigations are in close agreement with the viscous fluid as a particular case.  相似文献   

20.
In this study, the effects of viscous dissipation and internal heat generation/absorption on heat transfer viscous flow over a moving wedge in the presence of suction or injection with a convective boundary condition have been carried out numerically for various values of dimensionless parameters. With the help of similarity transformation, the momentum and energy equations are reduced to a set of coupled non‐linear ordinary differential equations. These equations are solved using the Runge–Kutta fourth‐order method with a shooting technique. The variation in the dimensionless temperature, velocity, heat transfer coefficient, and shear stress have been presented in tabular as well as in graphical form for a range of controlling parameters. It is shown that the dimensionless heat transfer rate is a strong function of viscous dissipation and convective parameters and heat transfer shows an enhanced behavior with the stretching parameter for both the favorable and unfavorable regimes. It is also shown that in the presence of a heat source, the dimensionless temperature and its gradients in thermal boundary layers are found to be high for a high value of the convection parameter. The comparison of present results with the available data shows a good agreement. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 42(7): 589–602, 2013; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21055  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号