首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
改进的粒子群动态过程神经网络及其应用   总被引:6,自引:0,他引:6  
为克服前向过程神经网络收敛速度慢、精度低的问题,本文提出了一种基于改进的粒子群动态过程神经网络(IDPNN)。对于给定的全连接的过程神经网络,通过IPSO优化其连接权值和网络结构删除冗余连接使之成为部分连接的过程神经网络系统,从而降低了计算成本。将经过IPSO训练的动态过程神经网络应用于Iris模式分类问题,结果表明,改进的粒子群动态过程神经网络具有较高的收敛速度和精确性。  相似文献   

2.
基于粒子群算法的RBF神经网络的优化方法   总被引:1,自引:0,他引:1  
本文用粒子群算法来优化RBF神经网络的中心值和连接权值,使之具有更强的非线性逼近能力,并将优化后的RBF神经网络和未经优化的RBF神经网络用于非线性函数的逼近,实例证明优化后的RBF神经网络比未经优化的RBF神经网络具有更强的非线性函数的逼近能力。  相似文献   

3.
为研究采煤机在截割过程中的可靠性,通过粒子群算法对BP神经网络进行优化改进,建立采煤机可靠性预测模型。采用高斯型隶属度函数,构建材料应力-结构可靠度之间的隶属函数,通过正交仿真实验确定具有代表性工况下采煤机整机的可靠度,以实验结果建立学习样本,对预测模型的准确度进行检验,结果表明,预测结果与实验结果最大相对误差为2.61%,满足精度要求。利用预测模型对采煤机在不同牵引速度和截深条件下截割不同硬度煤层的可靠度进行分析,找出采煤机可靠度随三者的变化规律:随着煤层硬度以及牵引速度增加,可靠度降低幅度变大;随着截深增大,可靠度降低幅度逐渐趋于平缓。  相似文献   

4.
为了使参加神经网络集成的个体差异度较大,从而提高网络集成的泛化能力,本文提出一种新的基于多子群粒子群算法的神经网络集成方法.每个子群通过补充差异度独立训练出一批神经网络,从每个子群中选择一个最优个体参加网络集成,实验使用了UCI标准数据集.实验证明,该算法的识别能力要好于Boosting、Bagging等传统方法.  相似文献   

5.
电力负荷预测通常采用神经网络方法,该方法训练时间较长,并且由于负荷受到气象因素影响,该算法预测的精度不是很高.为了克服当前存在的问题,采用粒子群算法优化BP神经网络的权值和阈值,归一化处理气象因素,利用神经网络预测短期电力负荷.实验结果表明,该方法比单纯BP神经网络预测具有明显优势.  相似文献   

6.
粒子群优化算法是根据鸟群觅食过程中的迁徙和群集模型而提出的用于解决优化问题的一类新兴的随机优化算法.介绍了PSO算法的基本原理和一些改进措施及PSO算法的应用,并对其将来的发展进行了展望.  相似文献   

7.
智能变电站过程层网络流量一旦发生异常,将直接影响继电保护动作的可靠性、快速性和灵敏性,然而目前缺乏针对智能变电站网络流量异常预警的方法.基于此,提出一种基于改进粒子群小波神经网络的网络流量预测模型,为智能变电站网络性能分析预测、网络故障和病毒入侵预警提供决策依据.分析智能变电站网络流量的特点,对流量数据进行归一化处理,建立小波神经网络预测模型,利用粒子群优化算法对传统的小波神经网络模型的网络结构和参数进行优化.在实际智能变电站运行环境中的实验表明,所提模型预测精度高,收敛速度快,提高了智能变电站网络流量预测的准确性和快速性,保障电网安全运行.  相似文献   

8.
针对粒子群优化算法精度不高、容易陷入局部最优、难以满足房地产市场形势需求的问题,提出一种改进粒子群优化神经网络,并应用于房地产市场预测中,该算法将混沌引入粒子群优化神经网络算法权重和阈值的初始化与更新的过程,提高了初始样本的质量,减轻了局部极值现象,提高了算法的全局搜索能力,同时设置了躲避因子,使粒子一定程度上离开偏离真实值的区域。研究结果表明,提出的改进算法可以提高粒子群优化神经网络权重和阈值的准确性。  相似文献   

9.
改进遗传算法与粒子群优化算法及其对比分析   总被引:18,自引:0,他引:18  
进化算法作为一类新的优化搜索方法,广泛应用于各种优化问题.现对简单遗传算法进行了改进,采用实值编码,并与模拟退火算法及基于适值排序和随机选择的方法相结合,形成了改进遗传算法.同时还介绍了一种新的进化算法一粒子群优化算法.将这两种优化算法应用于函数优化,并对优化结果进行了对比分析.比较结果表明,改进遗传算法和粒子群优化算法都可以在函数优化方面表现出较好的健壮性,但在找寻最优解的效率上,粒子群优化算法较好.  相似文献   

10.
笔者对用PSO训练前向神经网络做了研究,提出了用PSO算法训练前向神经网络的新方法,并通过算例和BP算法做了比较,实验结果说明了本文算法的有效性.  相似文献   

11.
1 INTRODUCTIONFor the last decade ,the wavelet neural net-work ( WNN) method was noticed by many re-searchers[1 3].It has been widely appliedin variousaspects such as short term load forecasting[4 ,5].While ,it is prone to cause the curse of di mension-ality with the factors taken into consideration in-creasing , which becomes the bottleneckfor thei m-provement of its application[6 ,7].Inthis study ,a new methodfor opti mizingthestructure of wavelet networks was developed byadopting an p…  相似文献   

12.
研究了使用粒子群优化(PSO)算法进行结构系统识别的方法,该方法的基本思想是将结构系统识别问题描述成一个多峰值非线性非凸的优化问题,通过PSO算法发现系统参数的最优估计。利用该方法在输入输出数据不完备且噪声污染条件下,同时在没有系统质量、刚度等先验信息的情况下对结构系统进行了识别,并与基于遗传算法(GA)的结构系统识别方法进行了比较。数值算例及比较结果表明:PSO方法易于实现且计算时占用资源低,并可以成功地对结构系统进行识别,识别效能十分优越。  相似文献   

13.
In order to study the problem that particle swarm optimization (PSO) algorithm can easily trap into local mechanism when analyzing the high dimensional complex optimization problems, the optimization calculation using the information in the iterative process of more particles was analyzed and the optimal system of particle swarm algorithm was improved. The extended particle swarm optimization algorithm (EPSO) was proposed. The coarse-grained and fine-grained criteria that can control the selection were given to ensure the convergence of the algorithm. The two criteria considered the parameter selection mechanism under the situation of random probability. By adopting MATLAB7.1, the extended particle swarm optimization algorithm was demonstrated in the resource leveling of power project scheduling. EPSO was compared with genetic algorithm (GA) and common PSO, the result indicates that the variance of the objective function of resource leveling is decreased by 7.9%, 18.2%, respectively, certifying the effectiveness and stronger global convergence ability of the EPSO.  相似文献   

14.
A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, the global searching capacity of the particle swarm optimization(SAPSO) was enchanced, and the searching capacity of the particle swarm optimization was studied. Then, the improyed particle swarm optimization algorithm was used to optimize the parameters of SVM (c,σ and ε). Based on the operational data provided by a regional power grid in north China, the method was used in the actual short term load forecasting. The results show that compared to the PSO-SVM and the traditional SVM, the average time of the proposed method in the experimental process reduces by 11.6 s and 31.1 s, and the precision of the proposed method increases by 1.24% and 3.18%, respectively. So, the improved method is better than the PSO-SVM and the traditional SVM.  相似文献   

15.
基于改进粒子群神经网络的提升机故障诊断   总被引:1,自引:0,他引:1  
针对BP神经网络对提升机制动系统进行故障诊断存在着收敛速度慢和可靠性差等缺点,提出了一种基于粒子群神经网络的故障诊断方法.根据制动系统故障征兆与故障类型之间的非线性和耦合性,建立了提升机制动系统的故障诊断模型;采用改进的粒子群算法优化BP神经网络的连接权值和阈值,应用于制动系统的故障诊断,缩短了神经网络的训练时间,提高了故障诊断的精度.仿真结果表明该诊断方法具有故障诊断能力强和诊断效率高等特点.  相似文献   

16.
为了扩大粒子群优化算法的应用范围和增强它的影响力,从软件重用的角度出发,考虑到算法流程的共性和个性,设计了一种基于策略模式的粒子群优化算法平台,此平台包含了基本的粒子群优化算法和经典的改进算法,可以解决连续优化和二进制组合优化问题.一系列的粒子群优化算法和优化问题被分别封装到相应的算法策略类和问题策略类中,这些类继承自一个具有统一接口的抽象基类.因此,该平台非常适合于粒子群优化算法的理论和应用研究,且易于维护和扩充.  相似文献   

17.
A cooperative system of a fuzzy logic model and a fuzzy neural network(CSFLMFNN)is proposed,in which a fuzzy logic model is acquired from domain experts and a fuzzy neural network is generated and prewired according to the model.Then PSO-CSFLMFNN is constructed by introducing particle swarm optimization(PSO)into the cooperative system instead of the commonly used evolutionary algorithms to evolve the prewired fuzzy neural network.The evolutionary fuzzy neural network implements accuracy fuzzy inference without rule matching.PSO-CSFLMFNN is applied to the intelligent fault diagnosis for a petrochemical engineering equipment,in which the cooperative system is proved to be effective.It is shown by the applied results that the performance of the evolutionary fuzzy neural network outperforms remarkably that of the one evolved by genetic algorithm in the convergence rate and the generalization precision.  相似文献   

18.
在时变加速因子的自组织粒子群算法、中值粒子群算法、混沌粒子群算法的基础上,提出了一种新的混合粒子群优化算法( MPSO),并利用这种新的算法来训练径向基函数(RBF)神经网络的参数(连接权、隐节点中心和宽度),验证了所提方法的有效性.进一步,提出了基于神经网络的非线性系统直接预测控制方案,实现非线性系统的实时控制.通过...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号