首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, Ti-6Al-4V (Ti-64) coatings were prepared on commercial Ti-64 substrates via a high-pressure cold spray process. The coatings were heat treated at different temperatures of 400–1000°C to investigate the effect of heat treatment temperature on their microstructure and mechanical and tribological properties. The increased heat treatment temperature from 400 to 600°C promoted diffusion between sprayed Ti-64 particles. Recrystallization of the sprayed particles was found at the heat treatment temperature of 800°C and grain growth was found in the microstructure of the coating heat treated at 1000°C. The highest and lowest hardnesses of the heat-treated coatings were found at heat treatment temperatures of 400 and 800°C, respectively. Therefore, the lowest and highest specific wear rates of the coatings were consistently found at 400 and 800°C due to their highest and lowest abrasive wear resistances associated with their highest and lowest surface hardnesses, respectively. The coating heat treated at 400°C showed the highest surface hardness of 470.1 Hv and lowest specific wear rate of 69.6 × 10?14 m3/Nm. It could be concluded that the microstructure and mechanical and tribological properties of the Ti-64 coatings were significantly influenced by heat treatment temperature.  相似文献   

2.
《Wear》2002,252(7-8):614-623
Effect of residual stresses on plasma sprayed alumina and chromia coatings sealed with aluminium phosphate were studied as a function of the temperature of the sealing treatment. Stresses were measured by X-ray stress analysis and high-speed circular microhole drilling method. Residual stress states were correlated with other coating properties such as microhardness, porosity, microstructure and dry abrasion wear resistance. Correlations were found between sealing treatment temperature, residual stress state and wear resistance. Wear resistance of the oxide coatings was increased at all sealing temperatures. Sealing treatment affected coatings by two mechanisms. Aluminium phosphate sealing induced compressive stresses to coatings and simultaneously bonded coating lamellar structure.  相似文献   

3.
In this work, the properties of air plasma sprayed WC–12%Co coating before and after heat treatment were compared with the properties of the hard chromium electrodeposit. WC–12%Co coatings were heat treated at 650, 900 and 1150 °C for 1 h in an argon atmosphere. XRD patterns confirmed the formation of an amorphous phase in the as-sprayed coating. This amorphous phase gradually transformed to η-carbides in the course of heat treatment of the coating. This transformation was confirmed by the XRD analysis of the coatings heat treated above 900 °C. Pin-on-disc wear test results showed that WC–12%Co coatings had a significantly better tribological performance as compared with that of the hard chromium electrodeposits. The results also indicated that heat treatment of the WC–12%Co coatings at 900 °C gave the highest wear resistance among the coatings, which was due to the formation of hard η-carbides at this temperature.  相似文献   

4.
Plasma sprayed molybdenum coatings with different coating thicknesses (100, 200, 300 and 400 μm) were deposited on steel substrate. The variation in microstructural characteristics and properties of coatings with various thicknesses was investigated. The microhardness was measured using a Vickers’ indenter. The quantitative investigation of porosity is carried out with the help of computerised image analyser. The influence of coating thickness on wear resistance was estimated using pin on disc wear test rig. The worn surface of coated pin was characterised by scanning electron microscopy. The experimental results indicated that porosity of coating was increased with increased coating thickness. The enhanced coating thickness also resulted in decreasing microhardness and reduced wear resistance. In this study, the plasma sprayed thin coating with thickness of 100 μm possesses the lowest porosity, the highest hardness and better wear resistance.  相似文献   

5.
《Wear》2007,262(7-8):978-985
In this research, hardness and wear resistance of two types of electroless coating have been investigated including Ni–P and Ni–P–Al2O3 coatings. These coatings were applied on AISI 1045 steel discs by electroless deposition process and then they were heat treated at 200, 400 and 600 °C for 1 h. Wear resistance of deposits was measured by the pin on disc method and wear surfaces and debris were studied by scanning electron microscopy (SEM). Also, microstructural changes were evaluated by X-ray diffraction (XRD) analysis.The results showed that the existence of alumina particles in Ni–P coating matrix led to an increase in the hardness and wear resistance of the deposits. It was also found that heat treated coatings at about 400 °C have the maximum hardness and wear resistance.  相似文献   

6.
《Wear》2007,262(1-2):204-209
Hydroxyapatite (HA) coatings were sprayed using gas tunnel type plasma spraying at different arc currents. Abrasive wear test was carried out for the coatings sprayed at different arc currents under unlubricated conditions in air atmosphere. The abrasive wear rate was measured at different coatings thickness to study the effect of coating thickness on the anti-abrasion resistance of HA coatings. The results showed that the abrasive wear resistance of HA coatings increases as the operating arc current of the plasma torch increases. On the other hand, the abrasive wear rate reaches a minimum value near the substrate with coating thickness less than 50 μm. The results showed that the coating hardness increases in the region near the substrate and increases as the arc current increases. The experimental results indicated that there is a relation between the abrasion resistance and hardness properties of HA coatings.  相似文献   

7.
A layer of AlTiN coating was deposited on YT14 cutting tool by cathodic arc ion plating (CAIP) and the coefficients of friction (COFs) of the AlTiN coating under different loads at a temperature of 800°C were investigated with a high-temperature wear tester. The wear morphologies, chemical elements, and phases of the coating after wear were analyzed with scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), and X-ray diffraction (XRD), respectively, and the contours of wear tracks were investigated with a comprehensive measurement tester for material surface performance. The effects of loads on COFs and wear resistance of the AlTiN coating were analyzed, and the wear mechanism of the AlTiN coating at high temperature is discussed. The results show that the mixed oxides of Al2O3 and TiO2 are produced under high temperature to improve the lubrication performance and wear resistance of the AlTiN coating. The average COFs of the coating under loads of 5, 7, and 9 N are 0.6495, 0.5897, and 0.3898, respectively. The COFs of the coating decrease with increasing load; as a result, the AlTiN coating is suitable for heavy loads at high temperature. The friction and wear mechanisms of the AlTiN coating are primarily composed of oxidation wear and abrasive wear, accompanied by fatigue wear and adhesive wear.  相似文献   

8.
Wear by sand abrasion occurs in cutter blades of sugarcane cutting machine. The wear life of components used under sand abrasion conditions is governed by process parameters, properties of abrasive particles in the soil and material properties. In this article, the wear performance of conventionally and cryotreated specimens was tested in the soil containing 20% silica at different blade speeds such as 300, 400, 600 and 750?rev?min??1 at the varied cutting times of 8, 16, 24 and 32?h respectively using simulated test rig fixture of sugarcane cutting machine. In addition, treated specimens were characterised for the microstructural features, hardness and surface roughness. Microstructural study indicated fine structure of tempered martensite with addition of segregation of silicon and carbon spots in the cryotreated specimen. The surface roughness of cryotreated material was decreased by 50% with respect to conventionally treated one. The mass loss of cryotreated cutting blades was reduced by 28% over conventional treatment at 750?rev?min??1. The wornout surface and subsurface of conventionally treated specimens showed predominant dislodgment of wear particles.  相似文献   

9.
Tool wear and machining performance of hardened AISI M2 steel in hard turning has been studied. Ceramic tools were used in the cutting tests without coolants, and the workpiece was heat treated to increase its hardness up to Re 60. Cutting forces, temperature, and tool wear were measured in the experiments and the effects of cutting conditions on these were investigated. Important aspects from the research are summarized as follows: 1. Flank wear was the dominant wear mode on the ceramic tool insert in hard turning. In contrast, crater wear was very small due to the ceramics high resistance against chemical reactions at high temperature. A notch was unlikely to be formed in the tool.

2. The initial flank wear rate mainly depends on the feed rate. High feed rates cause a high initial flank wear rate.

3. Depth of cut was the most important cutting parameter to affect cutting force variation, and the cutting force increased due to tool wear.

  相似文献   

10.
Fe62Ni3Cr4Mo2W3Si6B17C3 amorphous coatings were thermally sprayed by a high velocity oxygen fuel spraying system (DJ-2700) and heat-treated at the temperatures ranges from 873 to 1,173 K in vacuum for 1 h. Differential scanning calorimetry, X-ray diffraction (XRD), and scanning electron microscopy were used to study the microstructural characteristics of the coatings. Vickers hardness tester was used to measure the hardness of the coatings. At the same time, the sliding wear behavior of the coatings was evaluated in a reciprocating ball-on-disk system. Within the resolution of XRD, amorphous structure without apparent crystalline phases was obtained in the as-sprayed coating. The heat treatments above 873 K led to the crystallization of amorphous phase. With the increase of heat treatment temperature, diffusion and sintering could occur between the layers of the coatings. The highest microhardness was obtained in the coating heat-treated at 973 K. When wear tested at a relative low load of 2 N, a direct correlation between the hardness and wear resistance of the coatings seems to be reasonable. However, at relative high loads, the wear resistance of the coatings is dependent on the resistance to crack initiation and growth between the layers rather than the hardness.  相似文献   

11.
采用等离子喷涂技术在Q235钢基体上制备Fe48Cr15Mo14C15B6Y2非晶合金涂层,之后对涂层进行200,300,500,600,700℃热处理,研究了热处理对涂层微观结构、耐电化学腐蚀性能和耐均匀腐蚀性能的影响。结果表明:随着热处理温度的升高,涂层的非晶含量降低,孔隙率先减小后增大,经300℃热处理后涂层的孔隙率最低,且低于未热处理涂层的;热处理后涂层中的晶体相主要包括α-Fe,Fe-Cr,Fe63Mo37,Fe3C等;随着热处理温度的升高,涂层的自腐蚀电流密度先减小后增大,经300℃热处理后,自腐蚀电流密度最小,涂层的耐电化学腐蚀性能最好;经过热处理后,涂层在NaCl溶液中浸泡31d后的单位面积质量损失减小,且热处理温度越高,单位面积质量损失越小,涂层的耐均匀腐蚀性能提高。  相似文献   

12.
In this study, high-velocity oxygen-fuel sprayed amorphous coatings have been heat treated at various temperatures to form microstructures with crystalline phases. The structure, micro-hardness, cavitation erosion resistance and erosion–corrosion resistance of these coatings are compared. Crystalline phases are discovered in the coatings after heat treatments at 650 °C and 750 °C. The coating heat treated at 750 °C exhibits the poorest cavitation erosion resistance in 3.5 wt% NaCl solution among all coatings due to the degraded corrosion resistance. However, the hardness of the crystallized coating can reach 1000 Hv and the erosion–corrosion resistance of the heat treated coating is better than the untreated one.  相似文献   

13.
A type of Si3N4/TiC micro-nanocomposite ceramic cutting tool material was fabricated using Si3N4 micro-matrix with Si3N4 and TiC nanoparticles. Cutting performance of the Si3N4/TiC ceramic cutting tool in dry cutting of hardened steel was investigated in comparison with a commercial Sialon insert. Hard turning experiments were carried out at three different cutting speeds, namely 97, 114, and 156 m/min. Feed rate (f) and depth of cut (a p) were fixed at 0.1 mm/rev and 0.2 mm, respectively. Results showed that cutting temperature increased rapidly to nearly 1000 °C with increasing cutting speed. The two types of cutting tools featured similar wear behavior. However, the Si3N4/TiC micro-nanocomposite ceramic cutting tool exhibited better wear resistance than the Sialon tool. Morphologies of crater and flank wear were observed with a scanning electron microscope. Results indicated that wear variation of the two types of ceramic cutting tools differed in the same conditions. Wear of the Si3N4/TiC micro-nanocomposite ceramic cutting tool is mainly dominated by abrasion and adhesion, whereas that of the Sialon ceramic cutting tool is dominated by abrasion, adhesion, thermal shock cracking, and flaking.  相似文献   

14.
A series of plasma sprayed alumina coatings was evaluated regarding their erosion and abrasion characteristics. The coatings were deposited under different spraying conditions, using a commercial axial injection plasma spray system, and with powders of different grit sizes and crystallinity. A sintered bulk alumina and a conventionally sprayed coating, produced by a radial injection air plasma spray technique, were tested as reference materials. To evaluate the importance of energy input the coatings were produced using two different torch nozzle sizes and gas mixtures with a varied amount of hydrogen. The erosion and abrasion results indicate that hydrogen concentration, nozzle size and precursor powder type and size influence the tribological characteristics of the coatings. The wear resistance of the coatings seems to benefit from an increase in hydrogen concentration or torch nozzle size. The effect of precursor powder size on the wear resistance was more complex but indicates that sapphire powders of medium precursor sizes are advantageous to ordinary plasma spraying powders of alumina.  相似文献   

15.
《Wear》1997,212(2):244-253
The usefulness of WCCo cermets as wear resistant material for coatings is determined by the cladding technique employed. This paper compares the features of an 83% WCCo coating on an AISI 1043 steel substrate using two different application techniques: plasma spraying and laser cladding. Results show significantly less porosity, improved coating hardness and better layer-substrate adherence in laser cladded than in plasma sprayed coatings. This causes them to have different wear behaviour which was determined using a method developed on the basis of the PV factor theory using sliding linear contact of flat-cylinder type. The method proved that wear rate (Vd′) is directly proportional to the product of coefficient of friction (μ), load (C) and applied speed (V), Vd′ = KμCV, where proportionality constant, K, is different for every material and depends on conditions such as lubrication, temperature, etc. To study wear behaviour, laser cladded and plasma sprayed 83% WC-Co coatings, under extreme lubrication, were placed against a hardened and tempered AISI 1043 steel, at different load and sliding speed rates. As a result constant K was estimated for each coating. The tests also showed that wear rate in laser deposited coatings is approximately 34% lower than in plasma sprayed coatings.  相似文献   

16.
A series of turning tests were conducted to investigate the cutting performance of ceramic tools in high-speed turning iron-based superalloys GH2132 (A286). Three kinds of ceramic tools, KY1540, CC650, and CC670 were used and their materials are Sialon, Al2O3–Ti(C,N), and Al2O3–SiCw, respectively. The cutting forces, cutting temperatures, tool wear morphologies, and tool failure mechanisms are discussed. The experimental results show that with the increase in cutting speed, the resultant cutting forces with KY1540 and CC670 tools show a tendency to increase first and then decrease while those for CC650 increase gradually. The cutting temperature increases monotonically with the increase in cutting speed. The optimum cutting speeds for KY1540 and CC650 when turning GH2132 are less than 100 m/min, while those for CC670 are between 100 and 200 m/min. Flank wear is the main reason that leads to tool failure of KY1540 and CC670 while notch wear is the main factor that leads to tool failure of CC650. Tool failure mechanisms of ceramic tools when machining GH2132 include adhesion, chipping, abrasion, and notching. Better surface roughness can be got using CC670 ceramic tools.  相似文献   

17.
L. Bourithis  G.D. Papadimitriou 《Wear》2009,266(11-12):1155-1164
The concept of hard particles in a softer metal matrix has long appealed to number of industries dealing among others with drilling and mining. For these facilities, the PTA (Plasma Transferred Arc) alloying technique is advisable and advantageous for several reasons; the equipment may be portable and moved near the working site, the treatment may be applied strictly to the area where the wear problem is situated and after the treatment little machining is required. Four different coatings are tested against three different modes of wear occurring either alone or less frequently combined in this kind of applications, i.e. adhesion, low stress abrasion and two-body abrasion. Two of the coatings examined belong to the category of tool steels with very hard carbides in their microstructure, namely TiC, M2C and M6C. The other two are boride coatings belonging to the Fe–B and Fe–Cr–B system respectively. A heat treated AISI D2 tool steel commonly used in this type of applications is also examined for comparison. Fe–Cr–B coating performance is at least 2 times better in low stress and two-body abrasion and four orders of magnitude better in adhesion wear than the AISI D2 tool steel. Fe–B coating can be used in pure adhesion or abrasion situations, but their brittleness forbids their use in situations involving impact loading. AISI M2 coating presents similar wear performance with AISI D2 tool steel in abrasion, whereas in adhesion wear it performs at least two orders of magnitude better. MMC–TiC coating has good performance in pure two-body abrasion situations due to the presence of the very hard TiC particles in its microstructure.  相似文献   

18.
In machining, cutting tools suffer from severe surface wear, especially in the cutting of difficult-to-cut materials. A major cause of tool wear is the friction generated at the tool-work and tool-chip interfaces, which produces a great deal of frictional heat and abrasion. In order to extend tool life and improve the quality of machined components, a host of techniques have been applied to modify the rake and flank faces of cutting tools. These techniques aim at providing cutting tools with improved resistance to external loading, better tribological performance and/or better chemical stability. This article presents a review of the fundamentals behind which the friction and wear in machining are reduced by modifying the cutting tool surface with the commonly used techniques, such as surface coating, high energy beam treatment, and surface texturing. The effects of these surface modifications on improving the cutting performance are also analyzed. Future research directions are finally discussed.  相似文献   

19.
In this study, the cutting performance of an indexable insert drill with an asymmetric geometry for cutting difficult-to-cut materials was investigated. A solid twist drill with a symmetric geometry was used to compare the cutting characteristics. The cutting characteristics were evaluated using the thrust force, inner-surface roughness of the drilled hole, wear behavior, and tool temperature. Workpieces made of stainless steel, titanium alloy, and nickel-based alloy were selected as difficult-to-cut materials, and carbon steel was also selected. The tool temperature was higher in the order of carbon steel, stainless steel, titanium alloy, and nickel-based alloy for every drill under minimum quantity lubrication cutting. The influence of the workpiece material on the thrust force was different from that of the tool temperature for the indexable insert drill, whereas that of the solid twist drill was similar to the tool temperature tendency. When cutting the titanium alloy and nickel-based alloy, the tool temperature and thrust force of the indexable insert drill were lower than those of the solid-type twist drill. The inner-surface roughness of a hole drilled with the indexable insert drill had almost the same quality as that of a hole drilled with the solid-type twist drill when cutting the difficult-to-cut materials. The wear behavior of the indexable insert drill was remarkably different from that of the solid-type twist drill, and the flaking of the coating and the abrasion wear at the rake face were notable in the indexable insert drill.  相似文献   

20.
使用CP425牌号硬质合金涂层刀具进行切削速度、进给速度和切削深度三因素三水平正交磨损试验。通过对磨损试验结果的分析,得出影响CP425牌号硬质合金涂层刀片磨损性能的重要次序。并利用泰勒公式和MATLAB软件,得出刀片磨损寿命的评估计算公式,有利于指导选择最优的切削参数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号