共查询到17条相似文献,搜索用时 81 毫秒
1.
基于改进蚁群算法的无人机三维航路规划 总被引:8,自引:1,他引:8
研究了一种基于改进蚁群算法的无人机三维航路规划方法,以保证在敌方防御区域内以最小的被发现概率以及可接受的航程到达目标点。首先对无人机三维航路规划模型进行分析,在此基础上采用蚁群算法对三维航路进行优化。将最短路径的信息反馈到系统中作为搜索的指导信号,并改进节点选择方法,以提高应用蚁群算法搜索无人机三维航路的效率。最后将所研究的方法应用于无人机的三维航路规划,仿真结果表明本文方法是有效的。 相似文献
2.
基于蚁群算法的无人机任务规划 总被引:1,自引:0,他引:1
为了提高无人机(UAV)作战任务的成功率,在执行敌方防御区域内攻击任务前必需规划设计出高效的无人机飞行航路,保证无人机能够以最小的被发现概率及可接受的航程到达目标点。针对这一问题,本文对新近发展的蚁群算法进行了研究,提出适用于航路规划的优化方法,并对无人机的攻击任务航路进行了仿真计算。仿真结果表明该方法是一种有效的航路规划方法。 相似文献
3.
目前路径优化方法忽略了客户时间窗约束产生的惩罚成本,导致惩罚成本过高,无法得到最优配送路径,因此,提出基于改进蚁群算法的物流配送车辆路径优化方法.结合遗传算法完成对蚁群算法的改进,对物流配送车辆路径问题进行建模,得到路径规划问题的目标函数,并根据配送过程的实际情况和具体要求设定目标函数的约定条件,计算固定成本和变动成本... 相似文献
4.
针对电力系统无功优化多变量、多约束、非线性的特点,提出一种新的改进双种群蚁群算法。基本蚁群算法在众多优点之外也存在着搜索时间长,容易出现停滞等缺点。因此在基本蚁群算法的基础之上,引入双种群独立搜索,进行信息交流,较大概率的打破了单一蚁群搜索的停滞状态,保证了算法中解的多样性,提高了全局收敛能力。并在蚁群算法的信息素更新策略和参数上做出进一步的改进应用于无功优化。通过对IEEE30节点算例进行仿真计算以及与现有算法进行比较,验证算法的有效性。 相似文献
5.
提出了一种考虑电网可靠性的配电网规划模型,采用前推后代迭代法进行潮流计算,利用经典的故障模式后果分析法计算电网缺电成本,基于蚁群算法提出了一种适合于配电网的优化规划方法。通过对某算例的计算和分析,验证了本文方法的有效性。 相似文献
6.
提出了一种考虑电网可靠性的配电网规划模型,采用前推后代迭代法进行潮流计算,利用经典的故障模式后果分析法计算电网缺电成本,基于蚁群算法提出了一种适合于配电网的优化规划方法。通过对某算例的计算和分析,验证了本文方法的有效性。 相似文献
7.
基于改进蚁群算法的移动机器人路径规划 总被引:2,自引:0,他引:2
潘杰 《中国矿业大学学报》2012,41(1):108-113
针对大多数路径规划方法所忽视的路径尖峰,以及传统蚁群算法(ACA)易出现的早熟、陷入局部最优等问题,提出一种改进ACA以用于路径规划.首先,在ACA中融入遗传算子,利用交叉与变异操作来扩大解的搜索空间,提升解的全局性.然后,引入简化与平滑操作优化算子,对所寻路径做进一步处理,消除路径中不必要的尖峰,提高其平滑性.栅格环境下的机器人路径规划仿真结果表明,与A*以及传统ACA相比,所提算法能够得到更为平滑的最短路径. 相似文献
8.
针对蚁群算法收敛速度慢、效率低、容易陷入局部最优解的不足,本文提出一种自适应变化信息素总量的方式,使算法获得较快收敛速度.通过对启发函数的改进,增加蚁群搜索的目的性,降低陷入局部最优解的概率.仿真结果表明,改进的蚁群算法提高了搜索能力和收敛速度,验证了算法的有效性和优越性. 相似文献
9.
10.
基于改进蚁群算法的物流配送路径优化 总被引:3,自引:0,他引:3
建立了带约束条件的物流配送问题的数学模型,运用蚁群算法解决物流配送路径优化问题,将遗传算法的复制、交叉和变异等遗传算子引入蚁群算法,以提高算法的收敛速度和全局搜索能力;改进了信息素的更新方式,以提高蚁群算法的自适应性,使得算法在执行过程中能根据收敛和进展情况,相应地调整信息残留程度,从而提高收敛速度或全局搜索能力;引入了一种确定性搜索方法,加快启发式搜索的收敛速度.经过多次对比实验表明,使用改进的蚁群算法优化物流配送线路,可以有效而快速地求得问题的最优解或近似最优解 相似文献
11.
针对传统方法不能够有效的求解GIS最优路径问题,在文化算法的基础上提出了一种基于实际路况求解两地之间最优距离的蚁群优化算法.引入了表示天气、路况、驾驶员个人偏好等诸多不确定因素,并将改进的蚁群算法融入到文化算法当中,使蚁群算法具有群体空间和信仰空间并行进化的机制.群体空间采用改进的最大最小蚁群算法,从而有效的提高算法最优解的搜索能力和速度.通过模拟计算结果表明改进的算法求解实际最优路径在速度和精度上优于传统最优路径算法. 相似文献
12.
基于蚁群算法的三维路径规划大多存在规划速度慢、准确度不高等问题,提出了一种基于改进启发函数和自适应修正挥发系数的蚁群算法,设计了一种新的启发函数,提高了三维路径规划的准确度;提出自适应调整挥发系数,避免搜索陷入局部最优,同时加快了算法收敛速度。最后进行了仿真实验,结果证明了该方法的可行性和有效性。 相似文献
13.
基于改进蚁群算法的移动机器人全局路径规划 总被引:3,自引:0,他引:3
对已栅格化的机器人运动空间中的障碍物预处理,在蚁群算法原理的基础上,改进了伪随机比例规则,使蚂蚁的下一节点选择更加倾向于目标点,提高了蚂蚁的搜索效率。引入最优一最差蚂蚁思想来更新全局信息素轨迹的强度,增强搜索过程的指导性。为了防止早熟收敛现象的发生,采用最大一最小蚂蚁思想来限制信息素的强度。仿真研究表明:该算法具有高适用性和灵活性,对解决静态路径规划问题是可行的,有效的。 相似文献
14.
基于蚁群算法的无人车大区域路径规划方法大多存在速度慢、环境适应能力差等问题,构造了一种高程-四叉树模型,在完整记录区域信息的基础上对信息量进行有效压缩;设计了一种新的寻优启发函数,提高了路径规划的准确度;通过自适应调整挥发系数,避免搜索陷入局部最优.仿真实验结果表明,相比于传统蚁群算法,文章方法得出的最优路径更加准确,且算法复杂度低,收敛速度快. 相似文献
15.
在基本蚁群算法的基础上,将蚂蚁经过路径上各路段的次数与信息素更新机制相关联,改进了信息素更新方式,旨在提高蚁群算法的寻优能力和收敛到最优解的速度。将改进算法应用于只考虑过负荷约束和网络辐射型约束、以网络年综合费用和过负荷惩罚费用之和最小为目标函数的配电网规划问题中。通过一个10 kV配电网络规划问题的算例验证表明,改进算法在寻优能力和收敛速度方面均有所提高。 相似文献
16.
将蚁群算法用于针对运动目标的足球机器人动态避障路径规划,采用自适应更新策略的方法规划最佳避障路径,建立了严谨、简洁的选择概率函数和聚度函数,以达到对足球机器人避障路径的最优化。大量仿真实验表明,该方法可行有效。 相似文献
17.
翟梅梅 《淮南工业学院学报》2009,(3):58-63
遗传算法具有快速全局搜索能力,但对于系统中的反馈信息却没有利用,往往导致无为的冗余迭代,求解效率低。根据这一缺陷提出一种将蚁群算法融合到遗传算法的新策略:为了弥补遗传算法中的变异算子变异过程中的盲目无原则性,将蚁群算法的正反馈思想引入到遗传算法中。利用蚁群算法信息素更新原则指导变异规则,有效地提高了算法的寻优效率,优化了解的质量。为了验证算法的有效性,对TSPLIB库中的两个公共实际事例eil51和gr202以及安徽省17个城市的数据进行了仿真实验,结果表明改进后的算法是有效的。 相似文献