首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydroxyethylcellulose‐g‐methoxypoly (ethylene glycol) (HEC‐g‐PEG) graft copolymers were synthesized through the etherification reaction between the hydroxyl group of hydroxyethylcellulose (HEC) and iodinated methoxypoly (ethylene glycol) (PEG‐I), which was prepared on the basis of two‐step reaction. Fourier transforms infrared spectrum (FTIR), nuclear magnetic resonance (NMR), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), and iodide oxidation method were used to prove the success of synthesis of graft copolymer. Furthermore, the comparative studies of electro‐osmotic flow (EOF) and protein separation in bare‐fused silica, HEC and HEC‐g‐PEG‐coated capillary were performed in capillary electrophoresis (CE). The results showed that HEC‐g‐PEG‐coated capillary presented efficient EOF suppression ability and excellent resisting protein adsorption ability. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
A novel photosensitive low viscosity epoxy resin was synthesized by polyethylene glycol (PEG)‐modified bisphenol‐A epoxy resin (E51). The resin was modified by ethylene glycol, diethylene glycol, and different molecule weights (200,300,400) PEGs to optimize the minimum viscosity. FTIR was used to determine molecule structure. Cationic photoinitiator (UVI‐6976) mixed with modified resin (10 wt %), was utilized to boost the resin curing under UV light. The curing degree was beyond 90% within 40 s and the whole process was monitored by photo‐DSC. The modified resin diluted with ethylene glycol diglycidyl ether, was screen printed onto polyimide and polyethylene terephthalate substrate, and the properties of solder mask were up to China printed circuit association standard. The solder resist also meet all requirements under ink‐jet printing technology as the viscosity is under 60 mPa·s and the curing duration is <1 min. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
Curing kinetics and mechanism determine the structure and property of thermosetting resins and related composites. The curing kinetics and mechanism of a novel high performance resin system based on hyperbranched polysiloxane (HBPSi), 2,2′‐diallylbisphenol A modified bismaleimide (BD), and cyanate ester (CE) resins for Resin Transfer Molding (RTM) technique were systemically studied by Differential Scanning Calorimetry (DSC), Fourier Transform Infrared (FTIR) spectra, and torque rheometer. Results show that the addition of HBPSi to BD/CE resin not only decreases the initial curing temperature and apparent activation energy, but also changes the curing mechanism, and thus the structure and properties of resultant crosslinked networks. An “Interpenetrating network (IPN)‐coupling structure” is proposed to be formed in the HBPSi/BD/CE system, which is different from traditional “IPN” structure in BD/CE resin. The simulation of curing reaction suggests that the variety of the curing activity leads to the difference between the curing behaviors of BD/CE and HBPSi/BD/CE resins, which is in good agreement with FTIR and DSC analyses. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
采用差示扫描量热法研究了以聚乙二醇(PEG)接枝改性的纳米炭黑(NC)(NC-PEG)为填料对环氧树脂/4,4-二氨基二苯砜非等温固化反应的影响,通过Flynn-Wall-Ozawa法和Malek法确定了固化反应的动力学参数.结果表明:两参数的自催化模型能够很好地描述环氧树脂及其复合材料的固化反应过程,各试样的模型拟合结果与实验数据相吻合.NC-PEG能够促进环氧树脂的固化,使固化活化能降低,其中,NC-PEG用量为3 phr时,活化能最低.  相似文献   

5.
Unsaturated polyesters were synthesized based on ethylene glycol and maleic acid as unsaturated dicarboxylic acid, using a variety of saturated acids in the initial acid mixture, without or with different catalysts. The curing of the polyesters produced with styrene was studied using differential scanning calorimetry (DSC) under dynamic‐ and isothermal‐heating conditions. The FTIR spectra of the initial polyesters and cured polyesters were also determined. Curing is not complete at the end of DSC scan and the unreacted bonds were quantitatively determined from the FTIR spectra and by estimation based on literature data. The value of the mean degree of conversion (α) of all double bonds (styrene unit and maleate unit) was approximately α = 0.40. Using an appropriate kinetic model for the curing exotherm of polyesters, the activation energy (Ea), the reaction order (x) and the frequency factor (ko) were determined. Because the kinetic parameters (ie Ea, k, x) affect the kinetics in various different ways, the curves of degree of conversion versus time at various isothermal conditions are more useful to compare and characterize the curing of polyesters. The kinetic parameters are mainly influenced by the proportion of maleic acid in the polyesterification reaction mixture and secondarily by the residual polyesterification catalyst. The degree of conversion of already crosslinked polyesters is greatly increased by post‐curing them at elevated temperature and for a prolonged time. © 2002 Society of Chemical Industry  相似文献   

6.
The content distribution of chemical groups and the kinetics of curing process in the micro‐region interfaces of nitrate ester plasticized polyether (NEPE) based propellant/hydroxyl‐terminated polybutadiene (HTPB) based liner were studied by in‐situ diffuse reflection FT‐IR spectroscopy. During the curing process, the content of –NCO groups showed little increase in the liner region toward the interface. It rises quickly through the interface layer and is then stable in the region of the propellant layer, while the content of –NH groups gradually increases from liner to propellant. In the micro‐region between liner and propellant, the –C=O decreases rapidly through interface and then has a slight increase in the propellant region. Migration of nitrate esters appears at the interface of the NEPE propellant/liner at early period of curing, and –O–NO2 decreases from propellant to liner in the bonding interface micro‐region. A study of curing kinetics indicates that the second‐order reaction model can describe the curing reaction in the bonding interface at the early stage of curing process. The order of apparent curing reaction rate constant (k ) of liner (L point), intermediate point (I point) and propellant (P point) in the interface micron‐region is k L > k I > k P at the same curing temperature. The apparent reaction activation energy (E a) at L, I, and P points are 39.96, 81.49, and 62.51 kJ mol–1, respectively, based on the Arrhenius equation.  相似文献   

7.
Thermosetting polymer blends of novolac epoxy resin (EPN) and polyethylene glycol (PEG) were studied. The miscibility and crystallization behavior of the blends before curing reaction were investigated by polarized optical microscopy and differential scanning calorimetry (DSC). Overall uncured blend compositions were homogeneous in amorphous state. Single composition‐dependent glass‐transition temperature (Tg) for each blend could be observed, and the experimental Tg's of blends with EPN content ≥40 wt% could be explained well by the Gordon–Taylor equation. Thermal properties of blends cured with 4,4′‐diaminodiphenylmethane were also determined by DSC. The capability of PEG to crystallize in cured blends was different from that in uncured ones because of the topological effect of highly crosslinking structure. On the basis of Fourier transform infrared spectroscopy results, it was judged that there were intermolecular hydrogen‐bonding interactions between EPN and PEG in both cured and uncured blends. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

8.
Allyl ether (AE)‐modified unsaturated polyester oligomers were synthesized from polyethylene glycol (PEG), maleic anhydride (MAH), and trimethylolpropane mono allyl ether (TMPAE), and characterized by Fourier transform infrared (FTIR) spectra. The UV/air dual‐curable coatings were prepared from the oligomers using vinyl ether (VE) as a reactive diluent. FTIR spectra showed that C?C bonds in the coating composition had polymerized partially after cured by UV or air. The investigation of rheological behavior of the dual curable composition suggested that all the systems belonged to pseudoplastic fluid, and the increasing allyloxy content in oligomer resulted in a higher viscosity. Differential scanning calorimetry (DSC) analysis showed that the increasing TMPAE‐PEG molar ratio resulted in lower Tg, and all samples had the same glass transition temperature irrespective of the type of curing. The results of TGA for cured films indicated that UV‐cured film had better thermal stability than the air‐cured one. The air‐cured film showed superior pencil hardness, impact strength, and flexibility to the UV‐cured counterpart. However, the air‐cured film had poor adhesion and electric resistance properties. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2765–2770, 2004  相似文献   

9.
The kinetics of the cure reaction for a system of o‐cresol‐formaldehyde epoxy resin (o‐CFER), 3‐methyl‐tetrahydrophthalic anhydride (MeTHPA), N,N‐dimethyl‐benzylamine, and organic montmorillonite(O‐MMT) were investigated by means of X‐ray diffraction (XRD) and differential scanning calorimetry (DSC). The XRD result indicates that an exfoliated nanocomposite was obtained. The analysis of DSC data indicated the behavior was shown in the first stages of the cure for the system, which could be well described by the model proposed by Kamal. In the later stages, the reaction is mainly controlled by diffusion, and diffusion factor, f(α), was introduced into Kamal's equation. In this way, the curing kinetics was predicted well over the entire range of conversion. Molecular mechanism for curing reaction was discussed. The thermal degradation kinetics of the system were investigated by thermogravimetric analysis (TGA), which revealed that with the increase of O‐MMT content, TG curves shift to higher temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3023–3032, 2006  相似文献   

10.
FT-IR法研究粒铸EMCDB推进剂的固化反应动力学   总被引:2,自引:0,他引:2  
用傅里叶变换红外光谱(FT-IR)法对聚乙二醇(PEG)/异佛尔酮二异氰酸酯(IPDI)体系和IPDI封端的PEG预聚物/硝化棉(NC)体系固化反应动力学进行了研究,同时考察了复合燃烧催化剂(铅盐、铜盐和炭黑组成质量分数0.3%)对二体系的固化反应动力学的影响。实验结果表明:二体系均随温度升高,反应速率加快;相同温度下,催化剂的加入明显加快了固化反应速率,并降低了其表观活化能,但不改变固化反应级数(仍为二级反应)。  相似文献   

11.
12.
Macromonomer initiators behave as macro cross‐linkers, macro initiators, and macromonomers to obtain branched and cross‐linked block/graft copolymers. A series of new macromonomer initiators for atom transfer radical polymerization (MIM‐ATRP) based on polyethylene glycol (Mn = 495D, 2203D, and 4203D) (PEG) were synthesized by the reaction of the hydroxyl end of mono‐methacryloyl polyethylene glycol with 2‐bromo propanoyl chloride, leading to methacryloyl polyethylene glycol 2‐bromo propanoyl ester. Poly (ethylene glycol) functionalized with methacrylate at one end was reacted with 2‐bromopropionyl chloride to form a macromonomeric initiator for ATRP. ATRP was found to be a more controllable polymerization method than conventional free radical polymerization in view of fewer cross‐linked polymers and highly branched polymers produced from macromonomer initiators as well. In another scenario, ATRP of N‐isopropylacrylamide (NIPAM) was initiated by MIM‐ATRP to obtain PEG‐b‐PNIPAM branched block/graft copolymers. Thermal analysis, FTIR, 1H NMR, TEM, and SEM techniques were used in the characterization of the products. They had a thermo‐responsive character and exhibited volume phase transition at ~ 36°C. A plasticizer effect of PEG in graft copolymers was also observed, indicating a lower glass transition temperature than that of pure PNIPAM. Homo and copolymerization kinetics were also evaluated. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
Bisphenol‐A glycidyl ether epoxy resin was modified using reactive poly(ethylene glycol) (PEO). Dynamic mechanical analysis showed that introducing PEO chains into the structure of the epoxy resin increased the mobility of the molecular segments of the epoxy network. Impact strength was improved with the addition of PEO at both room (RT) and cryogenic (CT, 77 K) temperature. The curing kinetics of the modified epoxy resin with polyoxypropylene diamines was examined by differential scanning calorimetry (DSC). Curing kinetic parameters were determined from nonisothermal DSC curves. Kinetic analysis suggested that the two‐parameter autocatalytic model suitably describes the kinetics of the curing reaction. Increasing the reactive PEO content decreased the heat flow of curing with little effect on activation energy (Ea), pre‐exponential factor (A), or reaction order (m and n). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
The curing behavior and thermal properties of bisphenol A type novolac epoxy resin (bisANER) with methylhexahydrophthalic anhydride (MHHPA) at an anhydride/epoxy group ratio of 0.85 was studied with Fourier‐transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and thermogravimetry. The results showed that the FTIR absorption intensity of anhydride and epoxide decreased during the curing reaction, and the absorption peak of ester appeared. The dynamic curing energies were determined as 48.5 and 54.1 kJ/mol with Kissinger and Flynn–Wall–Ozawa methods, respectively. DSC measurements showed that as higher is the curing temperature, higher is the glass transition. The thermal degradation of the cured bisANER/MHHPA network was identified as two steps: the breaking or detaching of ? OH, ? CH2? , ? CH3, OC? O and C? O? C, etc., taking place between 300 and 450°C; and the carbonizing or oxidating of aromatic rings occurring above 450°C. The kinetics of the degradation reaction was studied with Coats–Redfern method showing a first‐order process. In addition, vinyl cyclohexene dioxide (VCD) was employed as a reactive diluent for bisANER (VCD/bisANER = 1 : 2 w/w) and cured with MHHPA, and the obtained network had a higher Tg and a slight lower degradation temperature than the undiluted system. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2041–2048, 2007  相似文献   

15.
A series of imidazole (MI) blocked 2,4‐toluene diisocyanate (TDI) with polyethylene glycol (PEG‐400) as soft segment (PEG‐MI‐b‐TDI) were synthesized for toughening and curing the bisphenol A type epoxy resin (E‐44). Fourier transform infrared (FTIR) spectrum indicates that the NCO groups of the isocyanate molecule are blocked with MI. For curing epoxy systems, elimination of epoxy group and the formation of urethane bonds were studied by FTIR spectroscopy. The results of mechanical property were shown that the tensile shear and impact strengths of neat MI and MI‐b‐TDI cured E‐44 are lower than those of PEG‐MI‐b‐TDI cured E‐44. Based on the scanning electron microscope studies, microstructure evolutions of the E‐44 cured by different curing agents were imaged. The mechanical, thermal, and dynamic mechanical properties were measured by universal testing machine, differential scanning calorimeter and dynamic mechanical analyzer (DMA). The toughness of E‐44 cured by PEG‐MI‐b‐TDI was effectively improved without sacrificing the tensile shear strength. Based on the DMA studies, the long soft chain of PEG brought in a noticeable lowering in the glass transition temperature (Tg). The glass transition temperature is near 165°C for the neat MI cured E‐44, which is higher than the Tgs of the other curing agents cured epoxy. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41345.  相似文献   

16.
A novel aromatic diamine‐based benzoxazine monomer (PDETDA) was successfully prepared from diethyltoluenediamine (DETDA), phenol, and paraformaldehyde through a simple one‐step solvent‐less method. The structure of PDETDA was confirmed by FTIR, 1H NMR, and 13C NMR. The curing behavior of PDETDA was studied by DSC, FTIR, and rheological measurement. The results showed that the alkyl substituents on the benzene ring in DETDA not only facilitated the synthesis of PDETDA by effectively hindering the formation of triazine network, but also endowed PDETDA with the advantage of low viscosity (1 Pa s at 90°C). However, steric hindrance of the substituents made PDETDA difficult to form a crosslinked network through ring‐opening polymerization, and therefore only oligomers and noncrosslinked polymers were obtained. The curing kinetics of PDETDA was studied by nonisothermal DSC, and the results revealed that the curing of PDETDA displayed autocatalytic characteristic. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41920.  相似文献   

17.
A series of pervaporation hybrid membranes were prepared from polyethylene glycol (PEG) and phenylaminomethyl trimethoxysilane (PAMTMS) based on the sol‐gel process, in which PEG was used as an organic moiety to improve the affinity for organic alcohols and silicone of PAMTMS was used as inorganic moiety to increase the permeation flux of organic species. Their application to separate isopropanol/benzene mixtures was investigated. FTIR spectra confirmed the reaction products. DSC measurement revealed that the influence of PEG content on the Tg and thermal behavior of membranes A, B, and C. FE‐SEM images exhibited that phase‐separated structure has occurred when the PEG content elevated to some extent. Pervaporation experiments showed that the permeation flux increased and the separation factor decreased with an increase in isopropanol (IPA) content in feed at 30°C. Meanwhile, the separation factor increased with an increase in feed temperature at 60 vol % IPA content. Moreover, it was found that the permeation flux was independent of the feed temperature, suggesting that feed temperature has little impact on the thermal motion of polymer chains. The increasing cross‐linking degree in hybrid matrix might be responsible for such trend. Based on these findings, it can be concluded that these pervaporation hybrid membranes have potential applications in the separation of isopropanol/benzene binary mixtures. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
The curing behavior of polydimethylsiloxane‐modified allylated novolac/4,4′‐bismaleimidodiphenylmethane resin (PDMS‐modified AN/BDM) was investigated by using Fourier transform infrared spectrometry (FTIR) and differential scanning calorimetry. The results of FTIR confirmed that the curing reactions of the PDMS‐modified AN/BDM resins, including “Ene” reaction and Diels–Alder reaction between allyl groups and maleimide groups, should be similar to those of the parent allylated novolac/4,4′‐bismaleimidodiphenylmethane (AN/BDM) resin. The results of dynamic DSC showed that the total curing enthalpy of the PDMS‐modified AN/BDM resins was lower than that of the parent resin. Incorporation of polydimethylsiloxane (PDMS) into the backbone of the allylated novolac (AN) resin favored the Claisen rearrangement reaction of allyl groups. The isothermal DSC method was used to study the kinetics of the curing process. The experimental data for the parent AN/BDM resin and the PDMS‐modified AN/BDM resins exhibited an nth‐order behavior. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
Summary Three series of new optically active poly(amide-imide-ether-urethane) (PAIEU) copolymers with different soft segments including polyethylene glycol (PEG), polypropylene glycol (PPG) or polytetramethylene glycol (PTMG) of molecular weight (MW) of 1000 were successfully synthesized. These copolymers were prepared via direct polycondensation reaction of an aromatic diacid based on L-leucine (1), 4,4’-methylene-bis-(4-phenylisocyanate) (MDI) (2) and different polyether polyols. FTIR spectroscopy shows the different absorption bands of NH, urethane and imide-I, II groups that suggests the different intermolecular interactions due to hydrogen bonding in these PAIEUs. On the other hand, DSC analysis reveals that the glass transition temperature for hard segments (Tgh) of PAIEUs based on polyethers with higher ratio of O/CH2 is higher than that of polyethers with lower ratio of O/CH2 and it decreases with the soft segment length in PAIEUs consisting of the same type of PEG soft segments.  相似文献   

20.
Ultraviolet (UV)/moisture dual‐curable polysiloxane acrylates (PSAs) were prepared from N,N‐bis[3‐(triethoxysilyl)propyl]amine (G402) and ethoxylated trimethylolpropane triacrylate (EB160) through Michael addition. The obtained prepolymers were characterized by 1H‐NMR and FTIR. The rheological behavior of the prepolymers exhibited the properties of a Bingham fluid and the apparent viscosity was directly correlated with molecular weight. The photocuring kinetics of PSA were studied using photo‐DSC and all the polymerization conversions were high. With increasing content of tertiary amine in the prepolymer, the photocuring rate in air increased as well. The moisture‐curing kinetics of the prepolymers was studied using FTIR. It was found that the curing mechanism may be described as the transforming of Si O C into Si O Si structure, which was consistent with the theoretical expectation. DSC and TGA were used to characterize the glass‐transition temperatures and the thermomechanical stability of the prepolymers. Measurements of physical properties showed excellent gloss, impact strength, and high electric resistance for both UV‐ and moisture‐cured films, but poor adhesion for UV‐cured films and lower hardness for moisture‐cured films. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 846–853, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号