首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transparent and conductive film based electronics have attracted substantial research interest in various wearable and integrated display devices in recent years. The breakdown of transparent electronics prompts the development of transparent electronics integrated with healability. A healable transparent chemical gas sensor device is assembled from layer‐by‐layer‐assembled transparent healable polyelectrolyte multilayer films by developing effective methods to cast transparent carbon nanotube (CNT) networks on healable substrates. The healable CNT network‐containing film with transparency and superior network structures on self‐healing substrate is obtained by the lateral movement of the underlying self‐healing layer to bring the separated areas of the CNT layer back into contact. The as‐prepared healable transparent film is assembled into healable transparent chemical gas sensor device for flexible, healable gas sensing at room temperature, due to the 1D confined network structure, relatively high carrier mobility, and large surface‐to‐volume ratio. The healable transparent chemical gas sensor demonstrates excellent sensing performance, robust healability, reliable flexibility, and good transparency, providing promising opportunities for developing flexible, healable transparent optoelectronic devices with the reduced raw material consumption, decreased maintenance costs, improved lifetime, and robust functional reliability.  相似文献   

2.
A stretchable, transparent, and body‐attachable chemical sensor is assembled from the stretchable nanocomposite network film for ultrasensitive chemical vapor sensing. The stretchable nanocomposite network film is fabricated by in situ preparation of polyaniline/MoS2 (PANI/MoS2) nanocomposite in MoS2 suspension and simultaneously nanocomposite deposition onto prestrain elastomeric polydimethylsiloxane substrate. The assembled stretchable electronic sensor demonstrates ultrasensitive sensing performance as low as 50 ppb, robust sensing stability, and reliable stretchability for high‐performance chemical vapor sensing. The ultrasensitive sensing performance of the stretchable electronic sensors could be ascribed to the synergistic sensing advantages of MoS2 and PANI, higher specific surface area, the reliable sensing channels of interconnected network, and the effectively exposed sensing materials. It is expected to hold great promise for assembling various flexible stretchable chemical vapor sensors with ultrasensitive sensing performance, superior sensing stability, reliable stretchability, and robust portability to be potentially integrated into wearable electronics for real‐time monitoring of environment safety and human healthcare.  相似文献   

3.

The LPG gas sensing characteristics of hybrid few-layered graphene (FLG)/ silver nanoparticles (Ag NPs) nanoarchitecture have been investigated. FLG and silver nanoparticles (Ag NPs) enhance the LPG gas sensing characteristics by collectively involving in the electronic transportation and diffusion mechanisms. FLG, Ag and FLG/ Silver nanocomposites are developed by ultra-sonication assisted method, and the effect of flexibility on gas sensing performance was thoroughly examined. The sensing materials as thin films are developed via drop-casting technique on photo lithography patterned flexible interdigitated electrodes (IDEs). The gas sensing characteristics of the prepared sensor are studied for LPG and other analytes at room temperature. The maximum response is observed for FLG/Ag nanocomposite to 100 ppm LPG at room temperature. FLG/Ag nanocomposite sensor demonstrates rapid response, high selectivity, reproducibility and good stability over a period of 30 days. Further the durability and flexibility tests conducted for the FLG/Ag hybrid sensor at bending angles reveal 78% stability even after 15 days of sensing studies.

  相似文献   

4.
Abstract

This paper reports the synthesis and UV sensing characteristics of a cellulose and ZnO hybrid nanocomposite (CEZOHN) prepared by exploiting the synergetic effects of ZnO functionality and the renewability of cellulose. Vertically aligned ZnO nanorods were grown well on a flexible cellulose film by direct ZnO seeding and hydrothermal growing processes. The ZnO nanorods have the wurtzite structure and an aspect ratio of 9 ~ 11. Photoresponse of the prepared CEZOHN was evaluated by measuring photocurrent under UV illumination. CEZOHN shows bi-directional, linear and fast photoresponse as a function of UV intensity. Electrode materials, light sources, repeatability, durability and flexibility of the prepared CEZOHN were tested and the photocurrent generation mechanism is discussed. The silver nanowire coating used for electrodes on CEZOHN is compatible with a transparent UV sensor. The prepared CEZOHN is flexible, transparent and biocompatible, and hence can be used for flexible and wearable UV sensors.  相似文献   

5.
To date, it has been a great challenge to design high‐performance flexible energy storage devices for sufficient loading of redox species in the electrode assemblies, with well‐maintained mechanical robustness and enhanced electron/ionic transport during charge/discharge cycles. An electrochemical activation strategy is demonstrated for the facile regeneration of carbon nanotube (CNT) film prepared via floating catalyst chemical vapor deposition strategy into a flexible, robust, and highly conductive hydrogel‐like film, which is promising as electrode matrix for efficient loading of redox species and the fabrication of high‐performance flexible pseudosupercapacitors. The strong and conductive CNT films can be effectively expanded and activated by electrochemical anodic oxygen evolution reaction, presenting greatly enhanced internal space and surface wettability with well‐maintained strength, flexibility, and conductivity. The as‐formed hydrogel‐like film is quite favorable for electrochemical deposition of manganese dioxide (MnO2) with loading mass up to 93 wt% and electrode capacitance kept around 300 F g?1 (areal capacitance of 1.2 F cm?2). This hybrid film was further used to assemble a flexible symmetric pseudosupercapacitor without using any other current collectors and conductive additives. The assembled flexible supercapacitors exhibited good rate performance, with the areal capacitance of more than 300 mF cm?2, much superior to other reported MnO2 based flexible thin‐film supercapacitors.  相似文献   

6.
Graphene leading to high surface‐to‐volume ratio and outstanding conductivity is applied for gas molecule sensing with fully utilizing its unique transparent and flexible functionalities which cannot be expected from solid‐state gas sensors. In order to attain a fast response and rapid recovering time, the flexible sensors also require integrated flexible and transparent heaters. Here, large‐scale flexible and transparent gas molecule sensor devices, integrated with a graphene sensing channel and a graphene transparent heater for fast recovering operation, are demonstrated. This combined all‐graphene device structure enables an overall device optical transmittance that exceeds 90% and reliable sensing performance with a bending strain of less than 1.4%. In particular, it is possible to classify the fast (≈14 s) and slow (≈95 s) response due to sp2‐carbon bonding and disorders on graphene and the self‐integrated graphene heater leads to the rapid recovery (≈11 s) of a 2 cm × 2 cm sized sensor with reproducible sensing cycles, including full recovery steps without significant signal degradation under exposure to NO2 gas.  相似文献   

7.
We have studied the gas sensing properties of five polyaniline-based materials—thick and thin PANI films, nanocomposite PANI/MWNT and PANI/SWNT films, and PANI nanogranules embedded in a polyvinylpyrrolidone matrix. The films (except for the latter) were deposited within the induction period of the polymerization process on gold interdigitated micro electrodes. Their sensitivity to NH3, H2, ethanol, methanol, and acetone was measured. The thin PANI film (~ 100 nm thick) prepared by a lift-off process had the sensitivity to ammonia below 0.5 ppm, which was higher than that of nanocomposite films. Two materials—thick PANI film and nanocomposite PANI/MWNT film—exhibited a shallow minimum in the temperature dependence of resistance (at 313 K and 319 K), which is a feature exploitable in practical applications, since the gas sensors should be insensitive to small temperature fluctuations at these temperatures.  相似文献   

8.
Piezoelectric nanogenerators with large output, high sensitivity, and good flexibility have attracted extensive interest in wearable electronics and personal healthcare. In this paper, the authors propose a high‐performance flexible piezoelectric nanogenerator based on piezoelectrically enhanced nanocomposite micropillar array of polyvinylidene fluoride‐trifluoroethylene (P(VDF‐TrFE))/barium titanate (BaTiO3) for energy harvesting and highly sensitive self‐powered sensing. By a reliable and scalable nanoimprinting process, the piezoelectrically enhanced vertically aligned P(VDF‐TrFE)/BaTiO3 nanocomposite micropillar arrays are fabricated. The piezoelectric device exhibits enhanced voltage of 13.2 V and a current density of 0.33 µA cm?2, which an enhancement by a factor of 7.3 relatives to the pristine P(VDF‐TrFE) bulk film. The mechanisms of high performance are mainly attributed to the enhanced piezoelectricity of the P(VDF‐TrFE)/BaTiO3 nanocomposite materials and the improved mechanical flexibility of the micropillar array. Under mechanical impact, stable electricity is stably generated from the nanogenerator and used to drive various electronic devices to work continuously, implying its significance in the field of consumer electronic devices. Furthermore, it can be applied as self‐powered flexible sensor work in a noncontact mode for detecting air pressure and wearable sensors for detecting some human vital signs including different modes of breath and heartbeat pulse, which shows its potential applications in flexible electronics and medical sciences.  相似文献   

9.
Metal–organic framework (MOF)–polymer mixed‐matrix membranes (MMMs) have shown great potential and superior performance in gas separations. However, their sensing application has not been fully established yet. Herein, a rare example of using flexible MOF‐based MMMs as a fluorescent turn‐on sensor for the detection of hydrogen sulfide (H2S) is reported. These MOF‐based MMMs are readily prepared by mixing a highly stable aluminum‐based nano‐MOF (Al‐MIL‐53‐NO2) into poly(vinylidene fluoride) with high loadings up to 70%. Unlike the intrinsic fragility and poor processability of pure‐MOF membranes, these MMMs exhibit desirable flexibility and processability that are more suitable for practical sensing applications. The uniform distribution of Al‐MIL‐53‐NO2 particles combined with the permanent pores of MOFs enable these MMMs to show good water permeation flux and consequently have a full contact between the analyte and MOFs. The developed MMM sensor (70% MOF loading) thus shows a highly remarkable detection selectivity and sensitivity for H2S with an exceptionally low detection limit around 92.31 × 10?9m , three orders of magnitude lower than the reported powder‐form MOFs. This work demonstrates that it is feasible to develop flexible luminescent MOF‐based MMMs as a novel platform for chemical sensing applications.  相似文献   

10.
A hybrid composite material of graphene and carbon nanotube (CNT) for high performance chemical and temperature sensors is reported. Integration of 1D and 2D carbon materials into hybrid carbon composites is achieved by coupling graphene and CNT through poly(ionic liquid) (PIL) mediated‐hybridization. The resulting CNT/PIL/graphene hybrid materials are explored as active materials in chemical and temperature sensors. For chemical sensing application, the hybrid composite is integrated into a chemo‐resistive sensor to detect a general class of volatile organic compounds. Compared with the graphene‐only devices, the hybrid film device showed an improved performance with high sensitivity at ppm level, low detection limit, and fast signal response/recovery. To further demonstrate the potential of the hybrid films, a temperature sensor is fabricated. The CNT/PIL/graphene hybrid materials are highly responsive to small temperature gradient with fast response, high sensitivity, and stability, which may offer a new platform for the thermoelectric temperature sensors.  相似文献   

11.
The fabrication of a mechanically flexible, piezoelectric nanocomposite material for strain sensing applications is reported. Nanocomposite material consisting of zinc oxide (ZnO) nanostructures embedded in a stable matrix of paper (cellulose fibers) is prepared by a solvothermal method. The applicability of this material as a strain sensor is demonstrated by studying its real‐time current response under both static and dynamic mechanical loading. The material presented highlights a novel approach to introduce flexibility into strain sensors by embedding crystalline piezoelectric material in a flexible cellulose‐based secondary matrix.  相似文献   

12.
As an excellent room temperature sensing material, polyaniline (PANI) needs to be further investigated in the field of high sensitivity and sustainable gas sensors due to its long recovery time and difficulty to complete recovery. The ZnO/PANI film with p‒n heterogeneous energy levels have successfully prepared by spraying ZnO nanorod synthesized by hydrothermal method on the PANI film rapidly synthesized at the gas‒liquid interface. The presence of p‒n heterogeneous energy levels enables the ZnO/PANI film to detect 0.1‒100 ppm (1 ppm = 10−6) NH3 at room temperature with the response value to 100 ppm NH3 doubled (12.96) and the recovery time shortened to 1/5 (31.2 s). The ability of high response and fast recovery makes the ZnO/PANI film to be able to detect NH3 at room temperature continuously. It provides a new idea for PANI to prepare sustainable room temperature sensor and promotes the development of room temperature sensor in public safety.  相似文献   

13.
Multi-wall carbon nanotubes (MWCNTs)-doped polyaniline (PANI) nanopowders were prepared by chemical oxidation polymerization. Then, the MWCNTs-doped PANI nanopowders were modified by a radio frequency (RF) oxygen plasma source. The morphology and structure of modified MWCNTs-doped PANI nanorods were analyzed by SEM and FI-IR. Gas sensors were fabricated based on plasma modified MWCNTs-doped PANI nanorods to detect ammonia at room temperature. The response amplitude of the gas sensor based on modified MWCNTs-doped PANI nanorods was much higher than those of MWCNTs-doped PANI nanopowders and pure PANI nanopowders sensors, respectively, in ammonia concentration range of 10–150 ppm. Cross responses of modified MWCNTs-doped PANI nanorods sensor to ammonia, ethanol, formaldehyde, and toluene were tested. The sensor showed good selectivity and stability. The sensing mechanism of modified MWCNTs-doped PANI nanorods gas sensor was analyzed.  相似文献   

14.
A platinum network‐based transparent electrode has been fabricated by electrospinning. The unique nanobelt structured electrode demonstrates low sheet resistance (about 16 Ω sq?1) and high transparency of 80% and excellent flexibility. One of the most interesting demonstrations of this Pt nanobelt electrode is its excellent reversibly resilient characteristic. The electric conductivity of the flexible Pt electrode can recover to its initial value after 160% extending and this performance is repeatable and stable. The good linear relationship between the resistance and strain of the unique structured Pt electrode makes it possible to assemble a wearable high sensitive strain sensor. Present reported Pt nanobelt electrode also reveals potential applications in electrode for flexible fuel cells and highly transparent ultraviolet (UV) sensors.  相似文献   

15.
Single‐wall carbon nanotubes (SWCNTs), especially in the form of large‐area and high‐quality thin films, are a promising material for use in flexible and transparent electronics. Here, a continuous synthesis, deposition, and transfer technique is reported for the fabrication of meter‐scale SWCNT thin films, which have an excellent optoelectrical performance including a low sheet resistance of 65 Ω/? with a transmittance of 90% at a wavelength of 550 nm. Using these SWCNT thin films, high‐performance all‐CNT thin‐film transistors and integrated circuits are demonstrated, including 101‐stage ring oscillators. The results pave the way for the future development of large‐scale, flexible, and transparent electronics based on CNT thin films.  相似文献   

16.
Silver nanowire (AgNW) random meshes have attracted considerable attention as flexible and high‐performance transparent electrodes. Notably, post‐treatment of the AgNW random meshes, such as thermal annealing, is usually required to guarantee comparable optical transparency and electrical conductivity to commercial indium tin oxide (ITO). Here, the integral elements of preparing a high‐performance, large‐area AgNW random mesh network are discussed. High‐performance nanostructured transparent electrodes can be obtained without any post‐treatment, thereby relieving the restrictions related to the substrate. Solvent washing and a large‐area spray‐coating method effectively reduce the wire–wire contact resistances, thus reducing or eliminating the requirement for post‐treatment.  相似文献   

17.
We describe here a simple and low-cost method to prepare ultra-thin, homogeneous, and transferable films of pristine carbon nanotubes (CNTs). The highly efficient chemical vapor deposition (CVD) growth method involves silica supported catalysts and alcohol vapor as gaseous carbon source. By varying the amount of catalysts, the thickness of synthesized films can be easily tuned from 20 nm (sub-monolayer) to 150 nm in a controlled fashion. High-resolution transmission electron microscopy (HRTEM) revealed that the films are composed primarily of single-walled and a small fraction of double-walled CNTs. A nonlinear relationship between film conductivity and thickness was observed. Our sub-monolayer ( 20 nm) film, which is noticeably thinner than conductive CNT films synthesized using other methods (typically > 50 nm and up to 100 microm), shows the highest conductivity of 400 mho x cm(-1) with 90% transparency in the visible range and close to 100% transparency in the infrared range. This ultra-thin film can also be transferred carrier-film free to a wide range of substrates including low-cost plastics for flexible electronics. Compared to CNT films prepared by filtration techniques, our films demonstrated superior stability against mechanical bending.  相似文献   

18.
Flexible and transparent electronic gas sensors capable of real‐time, sensitive, and selective analysis at room‐temperature, have gained immense popularity in recent years for their potential to be integrated into various smart wearable electronics and display devices. Here, recent advances in flexible transparent sensors constructed from semiconducting oxides, carbon materials, conducting polymers, and their nanocomposites are presented. The sensing material selection, sensor device construction, and sensing mechanism of flexible transparent sensors are discussed in detail. The critical challenges and future development associated with flexible and transparent electronic gas sensors are presented. Smart wearable gas sensors are believed to have great potential in environmental monitoring and noninvasive health monitoring based on disease biomarkers in exhaled gas.  相似文献   

19.
Optically reduced graphene oxide (ORGO) sheets are successfully integrated on silver nanowire (Ag NW)‐embedded transparent and flexible substrate. As a heating element, Ag NWs are embedded in a colorless polyimide (CPI) film by covering Ag NW networks using polyamic acid and subsequent imidization. Graphene oxide dispersed aqueous solution is drop‐coated on the Ag NW‐embedded CPI (Ag NW‐CPI) film and directly irradiated by intense pulsed light to obtain ORGO sheets. The heat generation property of Ag NW‐CPI film is investigated by applying DC voltage, which demonstrates unprecedentedly reliable and stable characteristics even in dynamic bending condition. To demonstrate the potential application in wearable chemical sensors, NO2 sensing characteristic of ORGO is investigated with respect to the different heating temperature (22.7–71.7 °C) of Ag NW‐CPI film. The result reveals that the ORGO sheets exhibit high sensitivity of 2.69% with reversible response/recovery sensing properties and minimal deviation of baseline resistance of around 1% toward NO2 molecules when the temperature of Ag NW‐CPI film is 71.7 °C. This work first demonstrates the improved reversible NO2 sensing properties of ORGO sheets on flexible and transparent Ag NW‐CPI film assisted by Ag NW heating networks.  相似文献   

20.
Polyaniline is one of the most promising conducting polymers for gas sensing applications due to its relatively high stability and n or p type doping capability. However, the conventionally doped polyaniline still exhibits relatively high resistivity, which causes difficulty in gas sensing measurement. In this work, the effect of carbon nanotube (CNT) dispersion on CO gas sensing characteristics of polyaniline gas sensor is studied. The carbon nanotube was synthesized by Chemical Vapor Deposition (CVD) using acetylene and argon gases at 600 degrees C. The Maleic acid doped Emeradine based polyaniline was synthesized by chemical polymerization of aniline. CNT was then added and dispersed in the solution by ultrasonication and deposited on to interdigitated AI electrode by solvent casting. The sensors were tested for CO sensing at room temperature with CO concentrations in the range of 100-1000 ppm. It was found that the gas sensing characteristics of polyaniline based gas sensor were considerably improved with the inclusion of CNT in polyaniline. The sensitivity was increased and response/recovery times were reduced by more than the factor of 2. The results, therefore, suggest that the inclusion of CNT in MA-doped polyaniline is a promising method for achieving a conductive polymer gas sensor with good sensitivity, fast response, low-concentration detection and room-operating-temperature capability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号