首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 452 毫秒
1.
The phenotypic heterogeneity of circulating tumor cells (CTCs) and the nonspecific adsorption of background cells impede the effective and sensitive detection of rare CTCs. Although leukocyte membrane coating approach has a good antileukocyte adhesion ability and holds great promise for addressing the challenge of capture purity, its limited specificity and sensitivity prevent its use in the detection of heterogeneous CTCs. To overcome these obstacles, a biomimetic biosensor that integrated dual-targeting multivalent aptamer/walker duplex functionalized biomimetic magnetic beads and an enzyme-powered DNA walker signal amplification strategy is designed. As compared to conventional leukocyte membrane coating, the biomimetic biosensor achieves efficient and high purity enrichment of heterogeneous CTCs with different epithelial cell adhesion molecule (EpCAM) expression while minimizing the interference of leukocytes. Meanwhile, the capture of target cells can trigger the release of walker strands to activate an enzyme-powered DNA walker, resulting in cascade signal amplification and the ultrasensitive and accurate detection of rare heterogeneous CTCs. Importantly, the captured CTCs remained viable and can be recultured in vitro with success. Overall, this work provides a new perspective for the efficient detection of heterogeneous CTCs by biomimetic membrane coating and paves the way for early cancer diagnosis.  相似文献   

2.
Circulating tumor cells (CTC) in the peripheral blood could provide important information for diagnosis of cancer metastasis and monitoring treatment progress. However, CTC are extremely rare in the bloodstream, making their detection and characterization technically challenging. We report here the development of an aptamer-mediated, micropillar-based microfluidic device that is able to efficiently isolate tumor cells from unprocessed whole blood. High-affinity aptamers were used as an alternative to antibodies for cancer cell isolation. The microscope-slide-sized device consists of >59,000 micropillars, which enhanced the probability of the interactions between aptamers and target cancer cells. The device geometry and the flow rate were investigated and optimized by studying their effects on the isolation of target leukemia cells from a cell mixture. The device yielded a capture efficiency of ~95% with purity of ~81% at the optimum flow rate of 600 nL/s. Further, we exploited the device for isolating colorectal tumor cells from unprocessed whole blood; as few as 10 tumor cells were captured from 1 mL of whole blood. We also addressed the question of low throughput of a typical microfluidic device by processing 1 mL of blood within 28 min. In addition, we found that ~93% of the captured cells were viable, making them suitable for subsequent molecular and cellular studies.  相似文献   

3.
Circulating tumor cells (CTCs) captured from blood fluid represent recurrent cancers and metastatic lesions to monitor the situation of cancers. We develop surface‐enhanced Raman scattering (SERS)‐coding microsphere suspension chip as a new strategy for fast and efficient capture, recovery, and detection of targeting cancer cells. Using HeLa cells as model CTCs, we first utilize folate as a recognition molecule to be immobilized in magnetic composite microspheres for capturing HeLa cells and attaining high capturing efficacy (up to 95%). After capturing cells, the composite microsphere, which utilizes a disulfide bond as crosslinker in the polymer shell and as a spacer for linking folate, can recycle 90% cells within 20 min eluted by glutathion solution. Taking advantage of the SERS with fingerprint features, we characterize captured/recovered cells with the unique signal of report‐molecule 4‐aminothiophenol through introducing the SERS‐coding microsphere suspension chip to CTCs. Finally, the exploratory experiment of sieving cells shows that the magnetic composite microspheres can selectively capture the HeLa cells from samples of mixed cells, indicating that these magnetic composite microspheres have potential in real blood samples for capturing CTCs.  相似文献   

4.
The selective and highly efficient capture of circulating tumor cells (CTCs) from blood and their subsequent release without damage are very important for the early diagnosis of tumors and for understanding the mechanism of metastasis. Herein, a universal strategy is proposed for the fabrication of an antibody‐free hydrogel that has a synergistic effect by featuring microinterfaces obtained by cell imprinting and molecular recognition conferred by boronate affinity. With this artificial antibody, highly efficient capture of human hepatocarcinoma SMMC‐7721 cells is achieved: as many as 90.3 ± 1.4% (n = 3) cells are captured when 1 × 105 SMMC‐7721 cells are incubated on a 4.5 cm2 hydrogel, and 99% of these captured cells are subsequently released without any loss of proliferation ability. In the presence of 1000 times as many nontarget cells, namely, leukaemia Jurkat cells, the SMMC‐7721 cells can be captured with an enrichment factor as high as 13.5 ± 3.2 (n = 3), demonstrating the superior selectivity of the artificial antibody for the capture of the targeted CTCs. Most importantly, the SMMC‐7721 cells can be successfully captured even when spiked into whole blood, indicating the great promise of this approach for the further molecular characterization of CTCs.  相似文献   

5.
Circulating rare cells in the blood are of great significance for both materials research and clinical applications. For example, circulating tumor cells (CTCs) have been demonstrated as useful biomarkers for “liquid biopsy” of the tumor. Circulating fetal nucleated cells (CFNCs) have shown potential in noninvasive prenatal diagnostics. However, it is technically challenging to detect and isolate circulating rare cells due to their extremely low abundance compared to hematologic cells. Nanostructured substrates offer a unique solution to address these challenges by providing local topographic interactions to strengthen cell adhesion and large surface areas for grafting capture agents, resulting in improved cell capture efficiency, purity, sensitivity, and reproducibility. In addition, rare-cell retrieval strategies, including stimulus-responsiveness and additive reagent-triggered release on different nanostructured substrates, allow for on-demand retrieval of the captured CTCs/CFNCs with high cell viability and molecular integrity. Several nanostructured substrate-enabled CTC/CFNC assays are observed maturing from enumeration and subclassification to molecular analyses. These can one day become powerful tools in disease diagnosis, prognostic prediction, and dynamic monitoring of therapeutic response—paving the way for personalized medical care.  相似文献   

6.
Circulating tumor cells (CTCs) offer tremendous potential for the detection and characterization of cancer. A key challenge for their isolation and subsequent analysis is the extreme rarity of these cells in circulation. Here, a novel label‐free method is described to enrich viable CTCs directly from whole blood based on their distinct deformability relative to hematological cells. This mechanism leverages the deformation of single cells through tapered micrometer scale constrictions using oscillatory flow in order to generate a ratcheting effect that produces distinct flow paths for CTCs, leukocytes, and erythrocytes. A label‐free separation of circulating tumor cells from whole blood is demonstrated, where target cells can be separated from background cells based on deformability despite their nearly identical size. In doping experiments, this microfluidic device is able to capture >90% of cancer cells from unprocessed whole blood to achieve 104‐fold enrichment of target cells relative to leukocytes. In patients with metastatic castration‐resistant prostate cancer, where CTCs are not significantly larger than leukocytes, CTCs can be captured based on deformability at 25× greater yield than with the conventional CellSearch system. Finally, the CTCs separated using this approach are collected in suspension and are available for downstream molecular characterization.  相似文献   

7.
Downstream studies of circulating tumor cells (CTCs), which may provide indicative evaluation information for therapeutic efficacy, cancer metastases, and cancer prognosis, are seriously hindered by the poor purity of enriched CTCs as large amounts of interfering leukocytes still nonspecifically bind to the isolation platform. In this work, biomimetic immunomagnetic nanoparticles (BIMNs) with the following features are designed: i) the leukocyte membrane camouflage, which could greatly reduce homologous leukocyte interaction and actualize high‐purity CTCs isolation, is easily extracted by graphene nanosheets; ii) facile antibody conjugation can be achieved through the “insertion” of biotinylated lipid molecules into leukocyte‐membrane‐coated nanoparticles and streptavidin conjunction; iii) layer‐by‐layer assembly techniques could integrate high‐magnetization Fe3O4 nanoparticles and graphene nanosheets efficiently. Consequently, the resulting BIMNs achieve a capture efficiency above 85.0% and CTCs purity higher than 94.4% from 1 mL blood with 20–200 CTCs after 2 min incubation. Besides, 98.0% of the isolated CTCs remain viable and can be directly cultured in vitro. Moreover, application of the BIMNs to cancer patients' peripheral blood shows good reproducibility (mean relative standard deviation 8.7 ± 5.6%). All results above suggest that the novel biomimetic nanoplatform may serve as a promising tool for CTCs enrichment and detection from clinical samples.  相似文献   

8.
Circulating tumor cells (CTCs) have attracted considerable attention as promising markers for diagnosing and monitoring the cancer status. Despite many technological advances in isolating CTCs, the capture efficiency and purity still remain challenges that limit clinical practice. Here, the construction of “nanotentacle”‐structured magnetic particles using M13‐bacteriophage and their application for the efficient capturing of CTCs is demonstrated. The M13‐bacteriophage to magnetic particles followed by modification with PEG is conjugated, and further tethered monoclonal antibodies against the epidermal receptor 2 (HER2). The use of nanotentacle‐structured magnetic particles results in a high capture purity (>45%) and efficiency (>90%), even for a smaller number of cancer cells (≈25 cells) in whole blood. Furthermore, the cancer cells captured are shown to maintain a viability of greater than 84%. The approach can be effectively used for capturing CTCs with high efficiency and purity for the diagnosis and monitoring of cancer status.  相似文献   

9.
Capturing rare disease-associated biomarkers from body fluids can offer an early-stage diagnosis of different cancers. Circulating tumor cells (CTCs) are one of the major cancer biomarkers that provide insightful information about the cancer metastasis prognosis and disease progression. The most common clinical solutions for quantifying CTCs rely on the immunomagnetic separation of cells in whole blood. Microfluidic systems that perform magnetic particle separation have reported promising outcomes in this context, however, most of them suffer from limited efficiency due to the low magnetic force generated which is insufficient to trap cells in a defined position within microchannels. In this work, a novel method for making soft micromagnet patterns with optimized geometry and magnetic material is introduced. This technology is integrated into a bilayer microfluidic chip to localize an external magnetic field, consequently enhancing the capture efficiency (CE) of cancer cells labeled with the magnetic nano/hybrid microgels that are developed in the previous work. A combined numerical-experimental strategy is implemented to design the microfluidic device and optimize the capturing efficiency and to maximize the throughput. The proposed design enables high CE and purity of target cells and real-time time on-chip monitoring of their behavior. The strategy introduced in this paper offers a simple and low-cost yet robust opportunity for early-stage diagnosis and monitoring of cancer-associated biomarkers.  相似文献   

10.
Circulating tumor cells (CTCs) escape from primary or metastatic lesions and enter into circulation, carrying significant information of cancer progression and metastasis. Capture of CTCs from the bloodstream and the characterization of these cells hold great significance for the detection, characterization, and monitoring of cancer. Despite the urgent need from clinics, it remains a major challenge to capture and retain these rare cells from human blood with high specificity and yield. Recent exciting advances in micro/nanotechnology, microfluidics, and materials science have enable versatile, robust, and efficient cell isolation and processing through the development of new micro/nanoengineered devices and biomaterials. This review provides a summary of recent progress along this direction, with a focus on emerging methods for CTC capture and processing, and their application in cancer research. Furthermore, classical as well as emerging cellular characterization methods are reviewed to reveal the role of CTCs in cancer progression and metastasis, and hypotheses are proposed in regard to the potential emerging research directions most desired in CTC‐related cancer research.  相似文献   

11.
The authors have developed a novel fabrication process for a selective micro-magnetic activated cell sorting (MACS) chip based on ferromagnetic material encapsulated micropillars (FMEMs), which is technically simple and low cost. The FMEM produces a high field gradient to magnetically attract, capture and hold cells on its interface. System test simulations were carried out to predict the efficacy of target capture and verify that the actual magnetic particles behaviour agreed well with model predictions. To determine the ability of the novel microMACS chip to capture circulating tumour cells (CTCs), SW620 human colon cancer cells were used in an in vitro flow model system and were able to be captured with the efficiency of 72.8%. The obvious accumulation of CTCs at a certain location on the chip suggested shear stress events at the pillar boundary may influence efficacy, and should be considered in further optimisation efforts.  相似文献   

12.
The development of specific and sensitive immunomagnetic cell separation nanotechnologies is central to enhancing the diagnostic relevance of circulating tumor cells (CTCs) and improving cancer patient outcomes. The limited number of specific biomarkers used to enrich a phenotypically diverse set of CTCs from liquid biopsies has limited CTC yields and purity. The ultra-high molecular weight mucin, mucin16 (MUC16) is shown to physically shield key membrane proteins responsible for activating immune responses against ovarian cancer cells and may interfere with the binding of magnetic nanoparticles to popular immunomagnetic cell capture antigens. MUC16 is expressed in ≈90% of ovarian cancers and is almost universal in High Grade Serous Epithelial Ovarian Cancer. This work demonstrates that cell bound MUC16 is an effective target for rapid immunomagnetic extraction of expressor cells with near quantitative yield, high purity and viability from serum. The results provide a mechanistic insight into the effects of nanoparticle physical properties and immunomagnetic labeling on the efficiency of immunomagnetic cell isolation. The growth of these cells has also been studied after separation, demonstrating that nanoparticle size impacts cell-particle behavior and growth rate. These results present the successful isolation of “masked” CTCs enabling new strategies for the detection of cancer recurrence and select and monitor chemotherapy.  相似文献   

13.
Circulating tumour cells (CTCs) draw significant attention as a promising biomarker for cancer prognosis, status monitoring, and metastasis diagnosis. However, the concentration of CTCs in peripheral blood is usually extremely low, thereby requiring enrichment followed by isolation of CTCs prior to detection. An immunomagnetic separation is a promising tool for CTCs enrichment. In this study, a cost‐effective magnetic separation method, based on streptavidin–biotin complexation, was developed and the effects of magnetic beads’ size in CTCs capture were compared. Magnetic nanobeads which were 25 nm in diameter lead to highest capture efficiency (82.2%) compared with 150 nm magnetic beads and 1 µm microbeads. Based on the streptavidin–biotin system, 25 nm magnetic nanobeads could capture model CTCs over 80% efficiency even at concentrations as low as ∼25 cells/mL that may represent the actual level of CTCs in peripheral blood of cancer patients. Furthermore, the isolated cells remained robust and healthy showing insignificant changes in morphology and behaviour when cultured for 24 h immediately after capture and isolation. The magnetic nanobeads based on streptavidin–biotin complexation showed promise for the easy and efficient capture and isolation of healthy CTCs for further diagnosis and analysis.Inspec keywords: cancer, magnetic separation, nanomedicine, nanomagnetics, proteins, biomagnetism, tumours, cellular biophysics, magnetic particles, molecular biophysics, blood, nanoparticlesOther keywords: streptavidin–biotin complexation, cancer prognosis, peripheral blood, immunomagnetic separation, CTCs capture, streptavidin–biotin system, circulating tumour cells, CTC enrichment, magnetic separation method, magnetic nanobeads, magnetic capture, size 25.0 nm, size 150.0 nm, time 24.0 hour  相似文献   

14.
Circulating tumor cells (CTCs) are valuable biomarkers for monitoring the status of cancer patients and drug efficacy. However, the number of CTCs in the blood is extremely low, and the isolation and detection of CTCs with high efficiency and sensitivity remain a challenge. Here, we present an approach to the efficient capturing and simple quantification of CTCs using quantum dots and magnetic beads. Anti‐EpCAM antibody‐conjugated quantum dots are used for the targeting and quantification of CTCs, and quantum‐dot‐attached CTCs are isolated using anti‐IgG‐modified magnetic beads. Our approach is shown to result in a capture efficiency of about 70%–80%, enabling the simple quantification of captured CTCs based on the fluorescence intensity of the quantum dots. The present method can be used effectively in the capturing and simple quantification of CTCs with high efficiency for cancer diagnosis and monitoring.  相似文献   

15.
Since circulating tumor cells (CTCs) are tumor cells which are found in the blood of cancer patients, CTCs are potential tumor markers, so a rapid isolation of CTCs is desirable for clinical applications. In this paper, a three-dimensional polystyrene (PS) microfiber fabric with vacuum aspiration system was developed for capturing CTCs within a short time. Various microfiber fabrics with different diameters were prepared by the electrospinning method and optimized for contact frequency with cells. Vacuum aspiration utilizing these microfiber fabrics could filter all cells within seconds without mechanical damage. The microfiber fabric with immobilized anti-EpCAM antibodies was able to specifically capture MCF-7 cells that express EpCAM on their surfaces. The specificity of the system was confirmed by monitoring the ability to isolate MCF-7 cells from a mixture containing CCRF-CEM cells that do not express EpCAM. Furthermore, the selective capture ability of the microfiber was retained even when the microfiber was exposed to the whole blood of pigs spiked with MCF-7 cells. The specific cell capture ratio of the vacuum aspiration system utilizing microfiber fabric could be improved by increasing the thickness of the microfiber fabric through electrospinning time.  相似文献   

16.
Cells of biomedical interest are, despite their functional significance, often present in very small numbers. Therefore the analysis and isolation of previously inaccessible rare cells, such as peripheral hematopoietic stem cells, endothelial progenitor cells, or circulating tumor cells, require efficient, sensitive, and specific procedures that do not compromise the viability of the cells. The current study builds on previous work on a rationally designed microfluidic magnetophoretic cell separation platform capable of throughputs of 240 μL min(-1). Proof-of-concept was first conducted using MCF-7 (1-1000 total cells) as the target rare cell spiked into high concentrations of Raji B-lymphocyte nontarget cells (~10(6) total cells). These experiments lead to the establishment of a magnet-based separation for the isolation of 50 MCF-7 cells directly from whole blood. Results show an efficiency of collection greater than 85%, with a purity of over 90%. Next, resident endothelial progenitor cells and hematopoietic stem cells are directly isolated from whole human blood in a rapid and efficient fashion (>96%). Both cell populations could be simultaneously isolated and, via immunofluorescent staining, individually identified and enumerated. Overall, the presented device illustrates a viable separation platform for high purity, efficient, and rapid collection of rare cell populations directly from whole blood samples.  相似文献   

17.
JM Park  JY Lee  JG Lee  H Jeong  JM Oh  YJ Kim  D Park  MS Kim  HJ Lee  JH Oh  SS Lee  WY Lee  N Huh 《Analytical chemistry》2012,84(17):7400-7407
Isolation of circulating tumor cells (CTCs) by size exclusion can yield poor purity and low recovery rates, due to large variations in size of CTCs, which may overlap with leukocytes and render size-based filtration methods unreliable. This report presents a very sensitive, selective, fast, and novel method for isolation and detection of CTCs. Our assay platform consists of three steps: (i) capturing CTCs with anti-EpCAM conjugated microbeads, (ii) removal of unwanted hematologic cells (e.g., leukocytes, erythrocytes, etc.) by selective sedimentation of CTCs within a density gradient medium, and (iii) simple microfiltration to collect these cells. To demonstrate the efficacy of this assay, MCF-7 breast cancer cells (average diameter, 24 μm) and DMS-79 small cell lung cancer cells (average diameter, 10 μm) were used to model CTCs. We investigated the relative sedimentation rates for various cells and/or particles, such as CTCs conjugated with different types of microbeads, leukocytes, and erythrocytes, in order to maximize differences in the physical properties. We observed that greater than 99% of leukocytes in whole blood were effectively removed at an optimal centrifugal force, due to differences in their sedimentation rates, yielding a much purer sample compared to other filter-based methods. We also investigated not only the effect of filtration conditions on recovery rates and sample purity but also the sensitivity of our assay platform. Our results showed a near perfect recovery rate (~99%) for MCF-7 cells and very high recovery rate (~89%) for DMS-79 cells, with minimal amounts of leukocytes present.  相似文献   

18.
The study of circulating tumor cells (CTCs) has been made possible by many technological advances in their isolation. Their isolation has seen many fronts, but each technology brings forth a new set of challenges to overcome. Microfluidics has been a key player in the capture of CTCs and their downstream analysis, with the aim of shedding light into their clinical application in cancer and metastasis. Researchers have taken diverging paths to isolate such cells from blood, ranging from affinity‐based isolation targeting surface antigens expressed on CTCs, to label‐free isolation taking advantage of the size differences between CTCs and other blood cells. For both major groups, many microfluidic technologies have reported high sensitivity and specificity for capturing CTCs. However, the question remains as to the superiority among these two isolation techniques, specifically to identify different CTC populations. This review highlights the key aspects of affinity and label‐free microfluidic CTC technologies, and discusses which of these two would be the highest benefactor for the study of CTCs.  相似文献   

19.
Lee SK  Kim GS  Wu Y  Kim DJ  Lu Y  Kwak M  Han L  Hyung JH  Seol JK  Sander C  Gonzalez A  Li J  Fan R 《Nano letters》2012,12(6):2697-2704
We report on the development of a nanowire substrate-enabled laser scanning imaging cytometry for rare cell analysis in order to achieve quantitative, automated, and functional evaluation of circulating tumor cells. Immuno-functionalized nanowire arrays have been demonstrated as a superior material to capture rare cells from heterogeneous cell populations. The laser scanning cytometry method enables large-area, automated quantitation of captured cells and rapid evaluation of functional cellular parameters (e.g., size, shape, and signaling protein) at the single-cell level. This integrated platform was first tested for capture and quantitation of human lung carcinoma cells from a mixture of tumor cells and leukocytes. We further applied it to the analysis of rare tumor cells spiked in fresh human whole blood (several cells per mL) that emulate metastatic cancer patient blood and demonstrated the potential of this technology for analyzing circulating tumor cells in the clinical settings. Using a high-content image analysis algorithm, cellular morphometric parameters and fluorescence intensities can be rapidly quantitated in an automated, unbiased, and standardized manner. Together, this approach enables informative characterization of captured cells in situ and potentially allows for subclassification of circulating tumor cells, a key step toward the identification of true metastasis-initiating cells. Thus, this nanoenabled platform holds great potential for studying the biology of rare tumor cells and for differential diagnosis of cancer progression and metastasis.  相似文献   

20.
Circulating tumor cells (CTCs), though exceedingly rare in the blood, are nonetheless becoming increasingly important in cancer diagnostics. Despite this keen interest and the growing number of potential clinical applications, there has been limited success in developing a CTC isolation platform that simultaneously optimizes recovery rates, purity, and cell compatibility. Herein, a novel tracheal carina‐inspired bifurcated (TRAB) microfilter system is reported, which uses an optimal filter gap size satisfying both 100% theoretical recovery rate and purity, as determined by biomechanical analysis and fluid–structure interaction (FSI) simulations. Biomechanical properties are also used to clearly discriminate between cancer cells and leukocytes, whereby cancer cells are selectively bound to melamine microbeads, which increase the size and stiffness of these cells. Nanoindentation experiments are conducted to measure the stiffness of leukocytes as compared to the microbead‐conjugated cancer cells, with these parameters then being used in FSI analyses to optimize the filter gap size. The simulation results show that given a flow rate of 100 μL min?1, an 8 μm filter gap optimizes the recovery rate and purity. MCF‐7 breast cancer cells with solid microbeads are spiked into 3 mL of whole blood and, by using this flow rate along with the optimized microfilter dimensions, the cell mixture passes through the TRAB filter, which achieves a recovery rate of 93% and purity of 59%. Regarding cell compatibility, it is verified that the isolation procedure does not adversely affect cell viability, thus also confirming that the re‐collected cancer cells can be cultured for up to 8 days. This work demonstrates a CTC isolation technology platform that optimizes high recovery rates and cell purity while also providing a framework for functional cell studies, potentially enabling even more sensitive and specific cancer diagnostics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号