首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Carbonaceous materials as anodes usually exhibit low capacity for lithium ion batteries (LIBs) and sodium ion batteries (SIBs). Oxygen‐doped carbonaceous materials have the potential of high capacity and super rate performance. However, up to now, the reported oxygen‐doped carbonaceous materials usually exhibit inferior electrochemical performance. To overcome this problem, a high reactive oxygen‐doped 3D interdigital porous carbonaceous material is designed and synthesized through epitaxial growth method and used as anodes for LIBs and SIBs. It delivers high reversible capacity, super rate performance, and long cycling stability (473 mA h g?1after 500 cycles for LIBs and 223 mA h g?1 after 1200 cycles for SIBs, respectively, at the current density of 1000 mA g?1), with a capacity decay of 0.0214% per cycle for LIBs and 0.0155% per cycle for SIBs. The results demonstrate that constructing 3D interdigital porous structure with reactive oxygen functional groups can significantly enhance the electrochemical performance of oxygen‐doped carbonaceous material.  相似文献   

2.
Fe2O3 is regarded as a promising anode material for lithium‐ion batteries (LIBs) and sodium‐ion batteries (SIBs) due to its high specific capacity. The large volume change during discharge and charge processes, however, induces significant cracking of the Fe2O3 anodes, leading to rapid fading of the capacity. Herein, a novel peapod‐like nanostructured material, consisting of Fe2O3 nanoparticles homogeneously encapsulated in the hollow interior of N‐doped porous carbon nanofibers, as a high‐performance anode material is reported. The distinctive structure not only provides enough voids to accommodate the volume expansion of the pea‐like Fe2O3 nanoparticles but also offers a continuous conducting framework for electron transport and accessible nanoporous channels for fast diffusion and transport of Li/Na‐ions. As a consequence, this peapod‐like structure exhibits a stable discharge capacity of 1434 mAh g?1 (at 100 mA g?1) and 806 mAh g?1 (at 200 mA g?1) over 100 cycles as anode materials for LIBs and SIBs, respectively. More importantly, a stable capacity of 958 mAh g?1 after 1000 cycles and 396 mAh g?1 after 1500 cycles can be achieved for LIBs and SIBs, respectively, at a large current density of 2000 mA g?1. This study provides a promising strategy for developing long‐cycle‐life LIBs and SIBs.  相似文献   

3.
Rational synthesis of flexible electrodes is crucial to rapid growth of functional materials for energy‐storage systems. Herein, a controllable fabrication is reported for the self‐supported structure of CuCo2O4 nanodots (≈3 nm) delicately inserted into N‐doped carbon nanofibers (named as 3‐CCO@C); this composite is first used as binder‐free anode for sodium‐ion batteries (SIBs). Benefiting from the synergetic effect of ultrasmall CuCo2O4 nanoparticles and a tailored N‐doped carbon matrix, the 3‐CCO@C composite exhibits high cycling stability (capacity of 314 mA h g?1 at 1000 mA g?1 after 1000 cycles) and high rate capability (296 mA h g?1, even at 5000 mA g?1). Significantly, the Na storage mechanism is systematically explored, demonstrating that the irreversible reaction of CuCo2O4, which decomposes to Cu and Co, happens in the first discharge process, and then a reversible reaction between metallic Cu/Co and CuO/Co3O4 occurrs during the following cycles. This result is conducive to a mechanistic study of highly promising bimetallic‐oxide anodes for rechargeable SIBs.  相似文献   

4.
High energy density is the major demand for next‐generation rechargeable batteries, while the intrinsic low alkali metal adsorption of traditional carbon–based electrode remains the main challenge. Here, the mechanochemical route is proposed to prepare nitrogen doped γ‐graphyne (NGY) and its high capacity is demonstrated in lithium (LIBs)/sodium (SIBs) ion batteries. The sample delivers large reversible Li (1037 mAh g?1) and Na (570.4 mAh g?1) storage capacities at 100 mA g?1 and presents excellent rate capabilities (526 mAh g?1 for LIBs and 180.2 mAh g?1 for SIBs) at 5 A g?1. The superior Li/Na storage mechanisms of NGY are revealed by its 2D morphology evolution, quantitative kinetics, and theoretical calculations. The effects on the diffusion barriers (Eb) and adsorption energies (Ead) of Li/Na atoms in NGY are also studied and imine‐N is demonstrated to be the ideal doping format to enhance the Li/Na storage performance. Besides, the Li/Na adsorption routes in NGY are optimized according to the experimental and the first‐principles calculation results. This work provides a facile way to fabricate high capacity electrodes in LIBs/SIBs, which is also instructive for the design of other heteroatomic doped electrodes.  相似文献   

5.
Flexible power sources have shown great promise in next‐generation bendable, implantable, and wearable electronic systems. Here, flexible and binder‐free electrodes of Na3V2(PO4)3/reduced graphene oxide (NVP/rGO) and Sb/rGO nanocomposites for sodium‐ion batteries are reported. The Sb/rGO and NVP/rGO paper electrodes with high flexibility and tailorability can be easily fabricated. Sb and NVP nanoparticles are embedded homogenously in the interconnected framework of rGO nanosheets, which provides structurally stable hosts for Na‐ion intercalation and deintercalation. The NVP/rGO paper‐like cathode delivers a reversible capacity of 113 mAh g?1 at 100 mA g?1 and high capacity retention of ≈96.6% after 120 cycles. The Sb/rGO paper‐like anode gives a highly reversible capacity of 612 mAh g?1 at 100 mA g?1, an excellent rate capacity up to 30 C, and a good cycle performance. Moreover, the sodium‐ion full cell of NVP/rGO//Sb/rGO has been fabricated, delivering a highly reversible capacity of ≈400 mAh g?1 at a current density of 100 mA g?1 after 100 charge/discharge cycles. This work may provide promising electrode candidates for developing next‐generation energy‐storage devices with high capacity and long cycle life.  相似文献   

6.
With the fast development in flexible electronic technology, power supply devices with high performance, low‐cost, and flexibility are becoming more and more important. Potassium ion batteries (KIBs) have a brilliant prospect for applications benefiting from high voltage, lost cost, as well as similar electrochemistry to lithium ion batteries (LIBs). Although carbon materials have been studied as KIBs anodes, their rate capability and cycling stability are still unsatisfactory due to the large‐size potassium ions. Herein, a nitrogen (N) and phosphorus (P) dual‐doped vertical graphene (N, P‐VG) uniformly grown on carbon cloth (N, P‐VG@CC) is reported as a binder‐free anode for flexible KIBs. With the combined advantages of rich active sites, highly accessible surface, highly conductive network, larger interlayer spacing as well as robust structural stability, this binder‐free N, P‐VG@CC anode exhibits high capacity (344.3 mAh g?1), excellent rate capability (2000 mA g?1; 46.5% capacity retention), and prominent long‐term cycling stability (1000 cycles; 82% capacity retention), outperforming most of the recently reported carbonaceous anodes. Moreover, a potassium ion full cell is successfully assembled on the basis of potassium Prussian blue (KPB)//N, P‐VG@CC, exhibiting a large energy density of 232.5 Wh kg?1 and outstanding cycle stability.  相似文献   

7.
A mild and environmental‐friendly method is developed for fabricating a 3D interconnected graphene electrode with large‐scale continuity. Such material has interlayer pores between reduced graphene oxide nanosheets and in‐plane pores. Hence, a specific surface area up to 835 m2 g−1 and a high powder conductivity up to 400 S m−1 are achieved. For electrochemical applications, the interlayer pores can serve as “ion‐buffering reservoirs” while in‐plane ones act as “channels” for shortening the mass cross‐plane diffusion length, reducing the ion response time, and prevent the interlayer restacking. As binder‐free supercapacitor electrode, it delivers a specific capacitance up to 169 F g−1 with surface‐normalized capacitance close to 21 μF cm−2 (intrinsic capacitance) and power density up to 7.5 kW kg−1, in 6 m KOH aqueous electrolyte. In the case of lithium‐ion battery anode, it shows remarkable advantages in terms of the initiate reversible Coulombic efficiency (61.3%), high specific capacity (932 mAh g−1 at 100 mA g−1), and robust long‐term retention (93.5% after 600 cycles at 2000 mAh g−1).  相似文献   

8.
Although graphite materials have been applied as commercial anodes in lithium‐ion batteries (LIBs), there still remain abundant spaces in the development of carbon‐based anode materials for sodium‐ion batteries (SIBs). Herein, an electrospinning route is reported to fabricate nitrogen‐doped carbon nanofibers with interweaved nanochannels (NCNFs‐IWNC) that contain robust interconnected 1D porous channels, produced by removal of a Te nanowire template that is coelectrospun within carbon nanofibers during the electrospinning process. The NCNFs‐IWNC features favorable properties, including a conductive 1D interconnected porous structure, a large specific surface area, expanded interlayer graphite‐like spacing, enriched N‐doped defects and active sites, toward rapid access and transport of electrolyte and electron/sodium ions. Systematic electrochemical studies indicate that the NCNFs‐IWNC exhibits an impressively high rate capability, delivering a capacity of 148 mA h g?1 at current density of as high as 10 A g?1, and has an attractively stable performance over 5000 cycles. The practical application of the as‐designed NCNFs‐IWNC for a full SIBs cell is further verified by coupling the NCNFs‐IWNC anode with a FeFe(CN)6 cathode, which displays a desirable cycle performance, maintaining acapacity of 97 mA h g?1 over 100 cycles.  相似文献   

9.
Exploitation of high‐performance anode materials is essential but challenging to the development of sodium‐ion batteries (SIBs). Among all proposed anode materials for SIBs, sulfides have been proved promising candidates due to their unique chemical and physical properties. In this work, a facile solvothermal method to in situ decorate cobalt sulfide (CoS) nanoplates on reduced graphene oxide (rGO) to build CoS@rGO composite is described. When evaluated as anode for SIBs, an impressive high specific capacity (540 mAh g?1 at 1 A g?1), excellent rate capability (636 mAh g?1 at 0.1 A g?1 and 306 mAh g?1 at 10 A g?1), and extraordinarily cycle stability (420 mAh g?1 at 1 A g?1 after 1000 cycles) have been demonstrated by CoS@rGO composite for sodium storage. The synergetic effect between the CoS nanoplates and rGO matrix contributes to the enhanced electrochemical performance of the hybrid composite. The results provide a facile approach to fabricate promising anode materials for high‐performance SIBs.  相似文献   

10.
Sodium‐ion batteries (SIBs) have been recognized as the promising alternatives to lithium‐ion batteries for large‐scale applications owing to their abundant sodium resource. Currently, one significant challenge for SIBs is to explore feasible anodes with high specific capacity and reversible pulverization‐free Na+ insertion/extraction. Herein, a facile co‐engineering on polymorph phases and cavity structures is developed based on CoMo‐glycerate by scalable solvothermal sulfidation. The optimized strategy enables the construction of CoMoOxSy with synergized partially sulfidized amorphous phase and yolk–shell confined cavity. When developed as anodes for SIBs, such CoMoOxSy electrodes deliver a high reversible capacity of 479.4 mA h g?1 at 200 mA g?1 after 100 cycles and a high rate capacity of 435.2 mA h g?1 even at 2000 mA g?1, demonstrating superior capacity and rate capability. These are attributed to the unique dual merits of the anodes, that is, the elastic bountiful reaction pathways favored by the sulfidation‐induced amorphous phase and the sodiation/desodiation accommodatable space benefits from the yolk–shell cavity. Such yolk–shell nano‐battery materials are merited with co‐tunable phases and structures, facile scalable fabrication, and excellent capacity and rate capability in sodium storage. This provides an opportunity to develop advanced practical electrochemical sodium storage in the future.  相似文献   

11.
A sulfur‐linked carbonyl‐based poly(2,5‐dihydroxyl‐1,4‐benzoquinonyl sulfide) (PDHBQS) compound is synthesized and used as cathode material for lithium‐ion batteries (LIBs). Flexible binder‐free composite cathode with single‐wall carbon nanotubes (PDHBQS–SWCNTs) is then fabricated through vacuum filtration method with SWCNTs. Electrochemical measurements show that PDHBQS–SWCNTs cathode can deliver a discharge capacity of 182 mA h g−1 (0.9 mA h cm−2) at a current rate of 50 mA g−1 and a potential window of 1.5 V–3.5 V. The cathode delivers a capacity of 75 mA h g−1 (0.47 mA h cm−2) at 5000 mA g−1, which confirms its good rate performance at high current density. PDHBQS–SWCNTs flexible cathode retains 89% of its initial capacity at 250 mA g−1 after 500 charge–discharge cycles. Furthermore, large‐area (28 cm2) flexible batteries based on PDHBQS–SWCNTs cathode and lithium foils anode are also assembled. The flexible battery shows good electrochemical activities with continuous bending, which retains 88% of its initial discharge capacity after 2000 bending cycles. The significant capacity, high rate performance, superior cyclic performance, and good flexibility make this material a promising candidate for a future application of flexible LIBs.  相似文献   

12.
Cellulose is a promising natural bio‐macromolecule due to its abundance, renewability and low cost. Here, a new method is developed to prepare pre‐sodiated carbonaceous anodes for sodium‐ion batteries (SIBs) from cellulose nanofibers (CNFs) under microwave irradiation for potential ultrafast and large‐scale manufacturing. While direct carbonization of CNFs through microwave treatment is usually impossible due to the weak microwave absorption of CNFs, it is found that a small amount of reduced graphene oxide (rGO) can act as an effective initiator. Microwaving rGO releases extremely high energy, giving rise to local ultrahigh temperature as well as ultrahigh heating rate, which then induces the fast carbonization of CNFs and the production of pre‐sodiated carbonaceous materials within seconds. The sodium in the carbonaceous materials, introduced from the carbonization of CNFs containing sodium‐ion carboxyl, offer favorable spaces for sodiation/desodiation, which improves the electrochemical performance of the sodium‐inserted carbonaceous anode. When the microwaved rGO‐CNF (MrGO‐CNF) is used as an anode for SIBs, a high initial capacity of 558 mAh g?1 is delivered and the capacity of 340 mAh g?1 remains after 200 cycles. The excellent reversible capacity and cycling stability indicate MrGO‐CNF a promising anode for sodium‐ion batteries.  相似文献   

13.
Sodium‐ion batteries (SIBs) are promising energy storage devices, but suffer from poor cycling stability and low rate capability. In this work, carbon doped Mo(Se0.85S0.15)2 (i.e., Mo(Se0.85S0.15)2:C) hierarchical nanotubes have been synthesized for the first time and serve as a robust and high‐performance anode material. The hierarchical nanotubes with diameters of 300 nm and wall thicknesses of 50 nm consist of numerous 2D layered nanosheets, and can act as a robust host for sodiation/desodiation cycling. The Mo(Se0.85S0.15)2:C hierarchical nanotubes deliver a discharge capacity of 360 mAh g−1 at a high current density of 2000 mA g−1 and keep a 81.8% capacity retention compared to that at a current density of 50 mA g−1, showing superior rate capability. Comparing with the second cycle discharge capacities, the nanotube anode can maintain capacities of 102.2%, 101.9%, and 97.8% after 100 cycles at current densities of 200, 500, and 1000 mA g−1, respectively. This work demonstrates the best cycling performance and high‐rate sodium storage capabilities of MoSe2 for SIBs to date. The hollow interior, hierarchical organization, layered structure, and carbon doping are beneficial for fast Na+‐ion and electron kinetics and are responsible for the stable cycling performance and high rate capabilities.  相似文献   

14.
Potassium‐ion batteries (PIBs) configurated by organic electrodes have been identified as a promising alternative to lithium‐ion batteries. Here, a porous organic Polyimide@Ketjenblack is demonstrated in PIBs as a cathode, which exhibits excellent performance with a large reversible capacity (143 mAh g?1 at 100 mA g?1), high rate capability (125 and 105 mAh g?1 at 1000 and 5000 mA g?1), and long cycling stability (76% capacity retention at 2000 mA g?1 over 1000 cycles). The domination of fast capacitive‐like reaction kinetics is verified, which benefits from the porous structure synthesized using in situ polymerization. Moreover, a renewable and low‐cost full cell is demonstrated with superior rate behavior (106 mAh g?1 at 3200 mA g?1). This work proposes a strategy to design polymer electrodes for high‐performance organic PIBs.  相似文献   

15.
Although sodium‐ion batteries (SIBs) are considered promising alternatives to their Li counterparts, they still suffer from challenges like slow kinetics of the sodiation process, large volume change, and inferior cycling stability. On the other hand, the presence of additional reversible conversion reactions makes the metal compounds the preferred anode materials over carbon. However, conductivity and crystallinity of such materials often play the pivotal role in this regard. To address these issues, atomic layer deposited double‐anion‐based ternary zinc oxysulfide (ZnOS) thin films as an anode material in SIBs are reported. Electrochemical studies are carried out with different O/(O+S) ratios, including O‐rich and S‐rich crystalline ZnOS along with the amorphous phase. Amorphous ZnOS with the O/(O+S) ratio of ≈0.4 delivers the most stable and considerably high specific (and volumetric) capacities of 271.9 (≈1315.6 mAh cm?3) and 173.1 mAh g?1 (≈837.7 mAh cm?3) at the current densities of 500 and 1000 mA g?1, respectively. A dominant capacitive‐controlled contribution of the amorphous ZnOS anode indicates faster electrochemical reaction kinetics. An electrochemical reaction mechanism is also proposed via X‐ray photoelectron spectroscopy analyses. A comparison of the cycling stability further establishes the advantage of this double‐anion‐based material over pristine ZnO and ZnS anodes.  相似文献   

16.
Heteroatom‐doped carbon materials with expanded interlayer distance have been widely studied as anodes for sodium‐ion batteries (SIBs). However, it remains unexplored to further enlarge the interlayer spacing and reveal the influence of heteroatom doping on carbon nanostructures for developing more efficient SIB anode materials. Here, a series of N‐rich few‐layer graphene (N‐FLG) with tuneable interlayer distance ranging from 0.45 to 0.51 nm is successfully synthesized by annealing graphitic carbon nitride (g‐C3N4) under zinc catalysis and selected temperature (T = 700, 800, and 900 °C). More significantly, the correlation between N dopants and interlayer distance of resultant N‐FLG‐T highlights the effect of pyrrolic N on the enlargement of graphene interlayer spacing, due to its stronger electrostatic repulsion. As a consequence, N‐FLG‐800 achieves the optimal properties in terms of interlayer spacing, nitrogen configuration and electronic conductivity. When used as an anode for SIBs, N‐FLG‐800 shows remarkable Na+ storage performance with ultrahigh rate capability (56.6 mAh g?1 at 40 A g?1) and excellent long‐term stability (211.3 mAh g?1 at 0.5 A g?1 after 2000 cycles), demonstrating the effectiveness of material design.  相似文献   

17.
Herein, 1D free‐standing and binder‐free hierarchically branched TiO2/C nanofibers (denoted as BT/C NFs) based on an in situ fabrication method as an anode for sodium‐ion batteries are reported. The in situ fabrication endows this material with large surface area and strong structural stability, providing this material with abundant active sites and smooth channels for fast ion transportation. As a result, BT/C NFs with the character of free‐standing membranes are directly used as binder‐free anode for sodium‐ion batteries, delivering a capacity of 284 mA h g?1 at a current density of 200 mA g?1 after 1000 cycles. Even at a high current density of 2000 mA g?1, the reversible capacity can still achieve as high as 204 mA h g?1. By means of kinetic analysis, it is demonstrated that the remarkable surface pseudocapacitive behavior is also a major factor to achieve excellent performance. The rationally designed structure coupled with the inherent pseudocapacitive behavior gives this material potential for sodium‐ion batteries.  相似文献   

18.
Research on sodium‐ion batteries (SIBs) has recently been revitalized due to the unique features of much lower costs and comparable energy/power density to lithium‐ion batteries (LIBs), which holds great potential for grid‐level energy storage systems. Transition metal dichalcogenides (TMDCs) are considered as promising anode candidates for SIBs with high theoretical capacity, while their intrinsic low electrical conductivity and large volume expansion upon Na+ intercalation raise the challenging issues of poor cycle stability and inferior rate performance. Herein, the designed formation of hybrid nanoboxes composed of carbon‐protected CoSe2 nanoparticles anchored on nitrogen‐doped carbon hollow skeletons (denoted as CoSe2@C∩NC) via a template‐assisted refluxing process followed by conventional selenization treatment is reported, which exhibits tremendously enhanced electrochemical performance when applied as the anode for SIBs. Specifically, it can deliver a high reversible specific capacity of 324 mAh g?1 at current density of 0.1 A g?1 after 200 cycles and exhibit outstanding high rate cycling stability at the rate of 5 A g?1 over 2000 cycles. This work provides a rational strategy for the design of advanced hybrid nanostructures as anode candidates for SIBs, which could push forward the development of high energy and low cost energy storage devices.  相似文献   

19.
Recently, binary ZnCo2O4 has drawn enormous attention for lithium‐ion batteries (LIBs) as attractive anode owing to its large theoretical capacity and good environmental benignity. However, the modest electrical conductivity and serious volumetric effect/particle agglomeration over cycling hinder its extensive applications. To address the concerns, herein, a rapid laser‐irradiation methodology is firstly devised toward efficient synthesis of oxygen‐vacancy abundant nano‐ZnCo2O4/porous reduced graphene oxide (rGO) hybrids as anodes for LIBs. The synergistic contributions from nano‐dimensional ZnCo2O4 with rich oxygen vacancies and flexible rGO guarantee abundant active sites, fast electron/ion transport, and robust structural stability, and inhibit the agglomeration of nanoscale ZnCo2O4, favoring for superb electrochemical lithium‐storage performance. More encouragingly, the optimal L‐ZCO@rGO‐30 anode exhibits a large reversible capacity of ≈1053 mAh g?1 at 0.05 A g?1, excellent cycling stability (≈746 mAh g?1 at 1.0 A g?1 after 250 cycles), and preeminent rate capability (≈686 mAh g?1 at 3.2 A g?1). Further kinetic analysis corroborates that the capacitive‐controlled process dominates the involved electrochemical reactions of hybrid anodes. More significantly, this rational design holds the promise of being extended for smart fabrication of other oxygen‐vacancy abundant metal oxide/porous rGO hybrids toward advanced LIBs and beyond.  相似文献   

20.
SnO2 has been considered as a promising anode material for lithium‐ion batteries (LIBs) and sodium ion batteries (SIBs), but challenging as well for the low‐reversible conversion reaction and coulombic efficiency. To address these issues, herein, SnO2 quantum dots (≈5 nm) embedded in porous N‐doped carbon matrix (SnO2/NC) are developed via a hydrothermal step combined with a self‐polymerization process at room temperature. The ultrasmall size in quantum dots can greatly shorten the ion diffusion distance and lower the internal strain, improving the conversion reaction efficiency and coulombic efficiency. The rich mesopores/micropores and highly conductive N‐doped carbon matrix can further enhance the overall conductivity and buffer effect of the composite. As a result, the optimized SnO2/NC‐2 composite for LIBs exhibits a high coulombic efficiency of 72.9%, a high discharge capacity of 1255.2 mAh g?1 at 0.1 A g?1 after 100 cycles and a long life‐span with a capacity of 753 mAh g?1 after 1500 cycles at 1 A g?1. The SnO2/NC‐2 composite also displays excellent performance for SIBs, delivering a superior discharge capacity of 212.6 mAh g?1 at 1 A g?1 after 3000 cycles. These excellent results can be of visible significance for the size effect of the uniform quantum dots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号