首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SnS2 has been widely studied as an anode material for sodium‐ion batteries (SIBs) based on the high theoretical capacity and layered structure. Unfortunately, rapid capacity decay associated with volume variation during cycling limits practical application. Herein, SnS2/Co3S4 hollow nanocubes anchored on S‐doped graphene are synthesized for the first time via coprecipitation and hydrothermal methods. When applied as the anode for SIBs, the sample delivers a distinguished charge specific capacity of 1141.8 mAh g?1 and there is no significant capacity decay (0.1 A g?1 for 50 cycles). When the rate is increased to 0.5 A g?1, it presents 845.7 mAh g?1 after cycling 100 times. Furthermore, the composite also exhibits an ultrafast sodium storage capability where 392.9 mAh g?1 can be obtained at 10 A g?1 and the charging time is less than 3 min. The outstanding electrochemical properties can be ascribed to the enhancement of conductivity for the addition of S‐doped graphene and the existence of p–n junctions in the SnS2/Co3S4 heterostructure. Moreover, the presence of mesopores between nanosheets can alleviate volume expansion during cycling as well as being beneficial for the migration of Na+.  相似文献   

2.
Sodium‐ion batteries (SIBs) are considered promising next‐generation energy storage devices. However, a lack of appropriate high‐performance anode materials has prevented further improvements. Here, a hierarchical porous hybrid nanosheet composed of interconnected uniform TiO2 nanoparticles and nitrogen‐doped graphene layer networks (TiO2@NFG HPHNSs) that are synthesized using dual‐functional C3N4 nanosheets as both the self‐sacrificing template and hybrid carbon source is reported. These HPHNSs deliver high reversible capacities of 146 mA h g?1 at 5 C for 8000 cycles, 129 mA h g?1 at 10 C for 20 000 cycles, and 116 mA h g?1 at 20 C for 10 000 cycles, as well as an ultrahigh rate capability up to 60 C with a capacity of 101 mA h g?1. These results demonstrate the longest cyclabilities and best rate capability ever reported for TiO2‐based anode materials for SIBs. The unprecedented sodium storage performance of the TiO2@NFG HPHNSs is due to their unique composition and hierarchical porous 2D structure.  相似文献   

3.
It is of great importance to exploit electrode materials for sodium‐ion batteries (SIBs) with low cost, long life, and high‐rate capability. However, achieving quick charge and high power density is still a major challenge for most SIBs electrodes because of the sluggish sodiation kinetics. Herein, uniform and mesoporous NiS2 nanospheres are synthesized via a facile one‐step polyvinylpyrrolidone assisted method. By controlling the voltage window, the mesoporous NiS2 nanospheres present excellent electrochemical performance in SIBs. It delivers a high reversible specific capacity of 692 mA h g?1. The NiS2 anode also exhibits excellent high‐rate capability (253 mA h g?1 at 5 A g?1) and long‐term cycling performance (319 mA h g?1 capacity remained even after 1000 cycles at 0.5 A g?1). A dominant pseudocapacitance contribution is identified and verified by kinetics analysis. In addition, the amorphization and conversion reactions during the electrochemical process of the mesoporous NiS2 nanospheres is also investigated by in situ X‐ray diffraction. The impressive electrochemical performance reveals that the NiS2 offers great potential toward the development of next generation large scale energy storage.  相似文献   

4.
Rational synthesis of flexible electrodes is crucial to rapid growth of functional materials for energy‐storage systems. Herein, a controllable fabrication is reported for the self‐supported structure of CuCo2O4 nanodots (≈3 nm) delicately inserted into N‐doped carbon nanofibers (named as 3‐CCO@C); this composite is first used as binder‐free anode for sodium‐ion batteries (SIBs). Benefiting from the synergetic effect of ultrasmall CuCo2O4 nanoparticles and a tailored N‐doped carbon matrix, the 3‐CCO@C composite exhibits high cycling stability (capacity of 314 mA h g?1 at 1000 mA g?1 after 1000 cycles) and high rate capability (296 mA h g?1, even at 5000 mA g?1). Significantly, the Na storage mechanism is systematically explored, demonstrating that the irreversible reaction of CuCo2O4, which decomposes to Cu and Co, happens in the first discharge process, and then a reversible reaction between metallic Cu/Co and CuO/Co3O4 occurrs during the following cycles. This result is conducive to a mechanistic study of highly promising bimetallic‐oxide anodes for rechargeable SIBs.  相似文献   

5.
Fe2O3 is regarded as a promising anode material for lithium‐ion batteries (LIBs) and sodium‐ion batteries (SIBs) due to its high specific capacity. The large volume change during discharge and charge processes, however, induces significant cracking of the Fe2O3 anodes, leading to rapid fading of the capacity. Herein, a novel peapod‐like nanostructured material, consisting of Fe2O3 nanoparticles homogeneously encapsulated in the hollow interior of N‐doped porous carbon nanofibers, as a high‐performance anode material is reported. The distinctive structure not only provides enough voids to accommodate the volume expansion of the pea‐like Fe2O3 nanoparticles but also offers a continuous conducting framework for electron transport and accessible nanoporous channels for fast diffusion and transport of Li/Na‐ions. As a consequence, this peapod‐like structure exhibits a stable discharge capacity of 1434 mAh g?1 (at 100 mA g?1) and 806 mAh g?1 (at 200 mA g?1) over 100 cycles as anode materials for LIBs and SIBs, respectively. More importantly, a stable capacity of 958 mAh g?1 after 1000 cycles and 396 mAh g?1 after 1500 cycles can be achieved for LIBs and SIBs, respectively, at a large current density of 2000 mA g?1. This study provides a promising strategy for developing long‐cycle‐life LIBs and SIBs.  相似文献   

6.
Sodium‐ion batteries (SIBs) have gained tremendous interest for grid scale energy storage system and power energy batteries. However, the current researches of anode for SIBs still face the critical issues of low areal capacity, limited cycle life, and low initial coulombic efficiency for practical application perspective. To solve this issue, a kind of hierarchical 3D carbon‐networks/Fe7S8/graphene (CFG) is designed and synthesized as freestanding anode, which is constructed with Fe7S8 microparticles well‐welded on 3D‐crosslinked carbon‐networks and embedded in highly conductive graphene film, via a facile and scalable synthetic method. The as‐prepared freestanding electrode CFG represents high areal capacity (2.12 mAh cm?2 at 0.25 mA cm?2) and excellent cycle stability of 5000 cycles (0.0095% capacity decay per cycle). The assembled all‐flexible sodium‐ion battery delivers remarkable performance (high areal capacity of 1.42 mAh cm?2 at 0.3 mA cm?2 and superior energy density of 144 Wh kg?1), which are very close to the requirement of practical application. This work not only enlightens the material design and electrode engineering, but also provides a new kind of freestanding high energy density anode with great potential application prospective for SIBs.  相似文献   

7.
Owing to high energy capacities, transition metal chalcogenides have drawn significant research attention as the promising electrode materials for sodium‐ion batteries (SIBs). However, limited cycle life and inferior rate capabilities still hinder their practical application. Improvement of the intrinsic conductivity by smart choice of elemental combination along with carbon coupling of the nanostructures may result in excellence of rate capability and prolonged cycling stability. Herein, a hierarchically porous binary transition metal selenide (Fe2CoSe4, termed as FCSe) nanomaterial with improved intrinsic conductivity was prepared through an exclusive methodology. The hierarchically porous structure, intimate nanoparticle–carbon matrix contact, and better intrinsic conductivity result in extraordinary electrochemical performance through their synergistic effect. The synthesized FCSe exhibits excellent rate capability (816.3 mA h g?1 at 0.5 A g?1 and 400.2 mA h g?1 at 32 A g?1), extended cycle life (350 mA h g?1 even after 5000 cycles at 4 A g?1), and adequately high energy capacity (614.5 mA h g?1 at 1 A g?1 after 100 cycles) as anode material for SIBs. When further combined with lab‐made Na3V2(PO4)3/C cathode in Na‐ion full cells, FCSe presents reasonably high and stable specific capacity.  相似文献   

8.
NiCo2S4 is an attractive anode for sodium-ion batteries (SIBs) due to its high capacity and excellent redox reversibility. Practical deployment of NiCo2S4 electrode in SIBs, however, is still hindered by the inferior capacity and unsatisfactory cycling performance, which result from the mismatch between the electrolyte chemistry and electrode. Herein, a functional electrolyte containing 1.0 m NaCF3SO3 in diethylene glycol dimethyl ether (DEGDME) (1.0 m NaCF3SO3-DEGDME) is developed, which can be readily used for NiCo2S4 anode with high initial coulomb efficiency (96.2%), enhanced cycling performance, and boosted capacities (341.7 mA h g−1 after 250 continuous cycles at the current density of 200 mA g−1). The electrochemical tests and related phase characterization combined with density functional theory (DFT) calculation indicate the ether-based electrolyte is more suitable for the NiCo2S4 anode in SIBs due to the formation of a stable electrode–electrolyte interface. Additionally, the importance of the voltage window is also demonstrated to further optimize the electrochemical performance of the NiCo2S4 electrode. The formation of sulfide intermediates during charging and discharging is predicted by combining DFT and verified by in situ XRD and HRTEM. The findings indicate that electrolyte engineering would be an effective way of performance enhancement for sulfides in practical SIBs.  相似文献   

9.
Transition metal chalcogenide with tailored nanosheet architectures with reduced graphene oxide (rGO) for high performance electrochemical sodium ion batteries (SIBs) are presented. Via one‐step oriented attachment growth, a facile synthesis of Co9Se8 nanosheets anchored on rGO matrix nanocomposites is demonstrated. As effective anode materials of SIBs, Co9Se8/rGO nanocomposites can deliver a highly reversible capacity of 406 mA h g?1 at a current density of 50 mA g?1 with long cycle stability. It can also deliver a high specific capacity of 295 mA h g?1 at a high current density of 5 A g?1 indicating its high rate capability. Furthermore, ex situ transmission electron microscopy observations provide insight into the reaction path of nontopotactic conversion in the hybrid anode, revealing the highly reversible conversion directly between the hybrid Co9Se8/rGO and Co nanoparticles/Na2Se matrix during the sodiation/desodiation process. In addition, it is experimentally demonstrated that rGO plays significant roles in both controllable growth and electrochemical conversion processes, which can not only modulate the morphology of the product but also tune the sodium storage performance. The investigation on hybrid Co9Se8/rGO nanosheets as SIBs anode may shed light on designing new metal chalcogenide materials for high energy storage system.  相似文献   

10.
The capacity and conductivity deficiencies of TiO2(B) are addressed simultaneously through a smart morphological and compositional design. Elaborately designed hierarchical heterostructures are reported, consisting of carbon‐coated TiO2(B) nanosheets decorated with Fe3O4 nanoparticles, based on a facile self‐assembly strategy. The novel hierarchical heterostructures exhibit a remarkable synergy by bridging the intriguing functionalities of TiO2(B) nanosheets (high safety and durability), Fe3O4 nanoparticles (high theoretical capacity), and carbon coatings (high conductivity), which results in significantly improved cycle and rate performances. A startlingly high reversible capacity of 763 mA h g−1 is delivered at 500 mA g−1 after 200 charging−discharging cycles. Even when the current density is as high as 10 000 mA g−1, the reversible capacity is still up to 498 mA h g−1. This smart morphological and compositional design opens up new opportunities for developing novel, multifunctional hierarchical heterostructures as promising anode materials for next‐generation, high‐power lithium‐ion batteries.  相似文献   

11.
An anode of self‐supported FeP@C nanotube arrays on carbon fabric (CF) is successfully fabricated via a facile template‐based deposition and phosphorization route: first, well‐aligned FeOOH nanotube arrays are simply obtained via a solution deposition and in situ etching route with hydrothermally crystallized (Co,Ni)(CO3)0.5OH nanowire arrays as the template; subsequently, these uniform FeOOH nanotube arrays are transformed into robust carbon‐coated Fe3O4 (Fe3O4@C) nanotube arrays via glucose adsorption and annealing treatments; and finally FeP@C nanotube arrays on CF are achieved through the facile phosphorization of the oxide‐based arrays. As an anode for lithium‐ion batteries (LIBs), these FeP@C nanotube arrays exhibit superior rate capability (reversible capacities of 945, 871, 815, 762, 717, and 657 mA h g−1 at 0.1, 0.2, 0.4, 0.8, 1.3, and 2.2 A g−1, respectively, corresponding to area specific capacities of 1.73, 1.59, 1.49, 1.39, 1.31, 1.20 mA h cm−2 at 0.18, 0.37, 0.732, 1.46, 2.38, and 4.03 mA cm−2, respectively) and a stable long‐cycling performance (a high specific capacity of 718 mA h g−1 after 670 cycles at 0.5 A g−1, corresponding to an area capacity of 1.31 mA h cm−2 at 0.92 mA cm−2).  相似文献   

12.
In this work, expanded MoS2 nanosheets grown on nitrogen‐doped branched TiO2/C nanofibers (NBT/C@MoS2 NFs) are prepared through electrospinning and hydrothermal treatment method as anode materials for sodium‐ion batteries (SIBs). The continuous 1D branched TiO2/C nanofibers provide a large surface area to grow expanded MoS2 nanosheets and enhance the electronic conductivity and cycling stability of the electrode. The large surface area and doping of nitrogen can facilitate the transfer of both Na+ ions and electrons. With the merits of these unique design and extrinsic pseudocapacitance behavior, the NBT/C@MoS2 NFs can deliver ultralong cycle stability of 448.2 mA h g?1 at 200 mA g?1 after 600 cycles. Even at a high rate of 2000 mA g?1, a reversible capacity of 258.3 mA h g?1 can still be achieved. The kinetic analysis demonstrates that pseudocapacitive contribution is the major factor to achieve excellent rate performance. The rational design and excellent electrochemical performance endow the NBT/C@MoS2 NFs with potentials as promising anode materials for SIBs.  相似文献   

13.
The fast electrochemical kinetics behavior and long cycling life have been the goals in developing anode materials for potassium ion batteries (PIBs). On account of high electron conductivity and theoretical capacity, transition metal selenides have been deemed as one of the promising anode materials for PIBs. Herein, a systematic structural manipulation strategy, pertaining to the confine of Fe3Se4 particles by 3D graphene and the dual phosphorus (P) doping to the Fe3Se4/3DG (DP-Fe3Se4/3DG), has been proposed to fulfill the efficient potassium-ion (K-ion) evolution kinetics and thus boost the K-ion storage performance. The theoretical calculation results demonstrate that the well-designed dual P doping interface can effectively promote K-ion adsorption behavior and provide a low energy barrier for K-ion diffusion. The insertion-conversion and adsorption mechanism for multi potassium storage behavior in DP-Fe3Se4/3DG composite has been also deciphered by combining the in situ/ex situ X-ray diffraction and operando Raman spectra evidences. As expected, the DP-Fe3Se4/3DG anode exhibits superior rate capability (120.2 mA h g−1 at 10 A g−1) and outstanding cycling performance (157.9 mA h g−1 after 1000 cycles at 5 A g−1).  相似文献   

14.
Designing and constructing bimetallic hierarchical structures is vital for the conversion‐alloy reaction anode of sodium‐ion batteries (SIBs). Particularly, the rationally designed hetero‐interface engineering can offer fast diffusion kinetics in the interface, leading to the improved high‐power surface pseudocapacitance and cycling stability for SIBs. Herein, the hierarchical zinc–tin sulfide nanocages (ZnS‐NC/SnS2) are constructed through hydrothermal and sulfuration reactions. The unconventional hierarchical design with internal void space greatly optimizes the structure stability, and bimetallic sulfide brings a bimetallic composite interface and N heteroatom doping, which are devoted to high electrochemical activity and improved interfacial charge transfer rate for Na+ storage. Remarkably, the ZnS‐NC/SnS2 composite anode exhibits a delightful reversible capacity of 595 mAh g?1 after 100 cycles at 0.2 A g?1, and long cycling capability for 500 cycles with a low capacity loss of 0.08% per cycle at 1 A g?1. This study opens up a new route for rationally constructing hierarchical heterogeneous interfaces and sheds new light on efficient anode material for SIBs.  相似文献   

15.
Alloy anodes have shown great potential for next‐generation lithium‐ion batteries (LIBs) and sodium‐ion batteries (SIBs). However, these applications are still limited by inherent huge volume changes and sluggish kinetics. To overcome such limitations, graphene‐protected 3D Sb‐based anodes grown on conductive substrate are designed and fabricated by a facile electrostatic‐assembling and subsequent confinement replacement strategy. As binder‐free anodes for LIBs, the obtained electrode exhibits reversible capacities of 442 mAh g−1 at 100 mA g−1 and 295 mAh g−1 at 1000 mA g−1, and a capacity retention of above 90% (based on the 10th cycle) after 200 cycles at 500 mA g−1. As for sodium storage properties, the reversible capacities of 517 mAh g−1 at 50 mA g−1 and 315 mAh g−1 at 1000 mA g−1, the capacity retention of 305 mAh g−1 after 100 cycles at 300 mA g−1 are obtained, respectively. Furthermore, the 3D architecture retains good structural integrity after cycling, confirming that the introduction of high‐stretchy and robust graphene layers can effectively buffer alloying anodes, and simultaneously provide sustainable contact and protection of the active materials. Such findings show its great potential as superior binder‐free anodes for LIBs and SIBs.  相似文献   

16.
The ingenious design of a freestanding flexible electrode brings the possibility for power sources in emerging wearable electronic devices. Here, reduced graphene oxide (rGO) wraps carbon nanotubes (CNTs) and rGO tightly surrounded by MnO2 nanosheets, forming a 3D multilevel porous conductive structure via vacuum freeze‐drying. The sandwich‐like architecture possesses multiple functions as a flexible anode for lithium‐ion batteries. Micrometer‐sized pores among the continuously waved rGO layers could extraordinarily improve ion diffusion. Nano‐sized pores among the MnO2 nanosheets and CNT/rGO@MnO2 particles could provide vast accessible active sites and alleviate volume change. The tight connection between MnO2 and carbon skeleton could facilitate electron transportation and enhance structural stability. Due to the special structure, the rGO‐wrapped CNT/rGO@MnO2 porous film as an anode shows a high capacity, excellent rate performance, and superior cycling stability (1344.2 mAh g−1 over 630 cycles at 2 A g−1, 608.5 mAh g−1 over 1000 cycles at 7.5 A g−1). Furthermore, the evolutions of microstructure and chemical valence occurring inside the electrode after cycling are investigated to illuminate the structural superiority for energy storage. The excellent electrochemical performance of this freestanding flexible electrode makes it an attractive candidate for practical application in flexible energy storage.  相似文献   

17.
Electrodes made of composites with heterogeneous structure hold great potential for boosting ionic and charge transfer and accelerating electrochemical reaction kinetics. Herein, hierarchical and porous double-walled NiTeSe–NiSe2 nanotubes are synthesized by a hydrothermal process assisted in situ selenization. Impressively, the nanotubes have abundant pores and multiple active sites, which shorten the ion diffusion length, decrease Na+ diffusion barriers, and increase the capacitance contribution ratio of the material at a high rate. Consequently, the anode shows a satisfactory initial capacity (582.5 mA h g−1 at 0.5 A g−1), a high-rate capability, and long cycling stability (1400 cycles, 398.6 mAh g−1 at 10 A g−1, 90.5% capacity retention). Moreover, the sodiation process of NiTeSe–NiSe2 double-walled nanotubes and underlying mechanism of the enhanced performance are revealed by in situ and ex situ transmission electron microscopy and theoretical calculations.  相似文献   

18.
Transition metal chalcogenides have received great attention as promising anode candidates for sodium‐ion batteries (SIBs). However, the undesirable cyclic life and inferior rate capability still restrict their practical applications. The design of micro–nano hierarchitectures is considered as a possible strategy to facilitate the electrochemical reaction kinetics and strengthen the electrode structure stability upon repeated Na+ insertion/extraction. Herein, urchin‐like Fe3Se4 hierarchitectures are successfully prepared and developed as a novel anode material for SIBs. Impressively, the as‐prepared urchin‐like Fe3Se4 can present an ultrahigh rate capacity of 200.2 mAh g‐1 at 30 A g‐1 and a prominent capacity retention of 99.9% over 1000 cycles at 1 A g‐1, meanwhile, a respectable initial coulombic efficiency of ≈100% is achieved. Through the conjunct study of in situ X‐ray diffraction, ex situ X‐ray absorption near‐edge structure spectroscopy, as well as cyclic voltammetry curves, it is intriguing to reveal that the phase transformation from monoclinic to amorphous structure accompanied by the pseudocapacitive Na+ storage behavior accounts for the superior electrochemical performance. When paired with the Na3V2(PO4)3 cathode materials, the assembled full cell enables high energy density and decent cyclic stability, demonstrating potential practical feasibility of the present urchin‐like Fe3Se4 anode.  相似文献   

19.
Due to the upstream pressure of lithium resources, low-cost sodium-ion batteries (SIBs) have become the most potential candidates for energy storage systems in the new era. However, anode materials of SIBs have always been a major problem in their development. To address this, V2C/Fe7S8@C composites with hierarchical structures prepared via an in situ synthesis method are proposed here. The 2D V2C-MXene as the growth substrate for Fe7S8 greatly improves the rate capability of SIBs, and the carbon layer on the surface provides a guarantee for charge–discharge stability. Unexpectedly, the V2C/Fe7S8@C anode achieves satisfactory sodium storage capacity and exceptional rate performance (389.7 mAh g−1 at 5 A g−1). The sodium storage mechanism and origin of composites are thoroughly studied via ex situ characterization techniques and first-principles calculations. Furthermore, the constructed sodium-ion capacitor assembled with N-doped porous carbon delivers excellent energy density (135 Wh kg−1) and power density (11 kW kg−1), showing certain practical value. This work provides an advanced system of sodium storage anode materials and broadens the possibility of MXene-based materials in the energy storage.  相似文献   

20.
A sulfur‐linked carbonyl‐based poly(2,5‐dihydroxyl‐1,4‐benzoquinonyl sulfide) (PDHBQS) compound is synthesized and used as cathode material for lithium‐ion batteries (LIBs). Flexible binder‐free composite cathode with single‐wall carbon nanotubes (PDHBQS–SWCNTs) is then fabricated through vacuum filtration method with SWCNTs. Electrochemical measurements show that PDHBQS–SWCNTs cathode can deliver a discharge capacity of 182 mA h g−1 (0.9 mA h cm−2) at a current rate of 50 mA g−1 and a potential window of 1.5 V–3.5 V. The cathode delivers a capacity of 75 mA h g−1 (0.47 mA h cm−2) at 5000 mA g−1, which confirms its good rate performance at high current density. PDHBQS–SWCNTs flexible cathode retains 89% of its initial capacity at 250 mA g−1 after 500 charge–discharge cycles. Furthermore, large‐area (28 cm2) flexible batteries based on PDHBQS–SWCNTs cathode and lithium foils anode are also assembled. The flexible battery shows good electrochemical activities with continuous bending, which retains 88% of its initial discharge capacity after 2000 bending cycles. The significant capacity, high rate performance, superior cyclic performance, and good flexibility make this material a promising candidate for a future application of flexible LIBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号