首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study has reported the preparation of polycarbonate (PC)/graphene nanoplate (GNP)/multiwall carbon nanotube (MWCNT) hybrid composite by simple melt mixing method of PC with GNP and MWCNT at 330°C above the processing temperature of the PC (processing temperature is 280°C) followed by compression molding. Through optimizing the ratio of (GNP/MWCNT) in the composites, high electromagnetic interference shielding effectiveness (EMI SE) value (∼21.6 dB) was achieved at low (4 wt%) loading of (GNP/MWCNT) and electrical conductivity of ≈6.84 × 10−5 S.cm−1 was achieved at 0.3 wt% (GNP/MWCNT) loading with low percolation threshold (≈0.072 wt%). The high temperature melt mixing of PC with nanofillers lowers the melt viscosity of the PC that has helped for better dispersion of the GNPs and MWCNTs in the PC matrix and plays a key factor for achieving high EMI shielding value and high electrical conductivity with low percolation threshold than ever reported in PC/MWCNT or PC/graphene composites. With this method, the formation of continuous conducting interconnected GNP‐CNT‐GNP or CNT‐GNP‐CNT network structure in the matrix polymer and strong π–π interaction between the electron rich phenyl rings and oxygen atom of PC chain, GNP, and MWCNT could be possible throughout the composites. POLYM. COMPOS., 37:2058–2069, 2016. © 2015 Society of Plastics Engineers  相似文献   

2.
The effect of carbon fiber (CF) modification with multiwall carbon nanotube (CNT) on the electrical, mechanical, and rheological properties of the polycarbonate (PC)/CF/CNT composite was investigated. The CF and multiwall CNT (MWCNT) were treated with sulfuric acid and nitric acid (3:1 wt %) mixture, to modify the CF with the CNT. For the PC with acid-treated CNT (a-CNT) modified acid-treated CF (a-CF) (PC/a-CF/a-CNT) composite, the electrical conductivity, and the electromagnetic interference shielding effectiveness (EMI SE) showed the highest values, compared with those of the PC/a-CF and PC/a-CF/CNT composites. The EMI SE of the PC/a-CF (10 wt %)/a-CNT (0.5 wt %) composite was found to be 26 (dB at the frequency of 10.0 GHz, and the EMI SE was increased by 91.2%, compared to that of the PC/a-CF composite at the same amount of total filler content. Among the composites studied in this work, the PC/a-CF/a-CNT composite also showed the highest values of relative permittivity (εr) and dielectric loss factor. The above results suggest that the CF modification with the a-CNT significantly affected the electrical conductivity and EMI SE of the composite, and the hybrid fillers of the a-CNT and a-CF resulted in good electrical pathways in the PC/a-CF/a-CNT composite. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47302.  相似文献   

3.
This article describes the synthesis and characterization of highly conductive polypyrrole (PPy)/multiwalled carbon nanotube (MWCNT) composites prepared by in situ polymerization of pyrrole using 5‐sulfoisophthalic acid monolithium salt [lithio sulfoisophthalic acid (LiSiPA)] as dopant and ferric chloride as oxidant. Several samples were prepared by varying the amounts of MWCNTs ranging from 1 to 5 wt %. Scanning electron microscope and transmission electron microscope images clearly show a thick coating of PPy on surface of MWCNTs. The electrical conductivity of PPy increased with increasing amount of MWCNTs and maximum conductivity observed was 52 S/cm at a loading of 5 wt % of MWCNTs. Pure PPy prepared under similar conditions had a conductivity of 25 S/cm. Electromagnetic interference (EMI) shielding effectiveness (SE) also showed a similar trend and average EMI shielding of ?108 dB (3 mm) was observed for sample having 5 wt % MWCNT in the frequency range of 8.2–12.4 GHz (X‐band). The light weight and absorption dominated total SE of ?93 to ?108 dB of these composites indicate the usefulness of these materials for microwave shielding. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45370.  相似文献   

4.
In this article is reported the preparation of carbon nanohorn (CNH)/graphene nanoplates (GNP)/polystyrene (PS) nanocomposites through in‐situ bulk polymerization of styrene monomer in the presence of CNH, followed by the addition of suspension polymerized GNP/PS bead during polymerization of styrene, as next‐generation multifunctional material for high electrical conductivity and electromagnetic interference shielding effectiveness (EMI SE) applications. Morphological analysis revealed selective dispersion of CNH in bulk polymerized PS matrix, where GNP/PS beads were randomly distributed. The formation of continuous CNH–CNH conductive path and GNP–CNH–GNP or CNH–GNP–CNH conductive network throughout the PS matrix at exceptionally low loading of CNH (1.0 wt %) and GNP (0.15 wt %) leads to high electrical conductivity (6.24 × 10?2 S cm?1) and EMI SE ~(?24.83 dB) when the nanocomposites was prepared in the presence of 75 wt % GNP/PS bead. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42803.  相似文献   

5.
The effects of hybrid fillers of carbon fiber (CF) and multiwall carbon nanotube (MWCNT) on the electrical conductivity, electromagnetic interference shielding effectiveness (EMI SE), flame retardancy, and mechanical properties of poly(butylene terephthalate) (PBT)/poly(acrylonitrile-co-styrene-co-acrylate) (PolyASA) (70/30, wt %) with conductive filler composites were investigated. The CF was used as the main filler, and MWCNT was used as the secondary filler to investigate the hybrid filler effect. For the PBT/PolyASA/CF (8 vol %)/MWCNT (2 vol %) composite, a higher electrical conductivity (1.4 × 100 S cm−1) and EMI SE (33.7 dB) were observed than that of the composite prepared with the single filler of CF (10 vol %), which were 9.0 × 10−2 S cm−1 and 23.7 dB, respectively. This increase in the electrical properties might be due to the longer CF length and hybrid filler effect in the composites. From the results of aging test at 85 °C, 120 h, the electrical conductivity and EMI SE of the composites decreased slightly compared to that of the composite without aging. The results of electrical conductivity, EMI SE, and flame retardancy suggested that the composite with the hybrid fillers of CF and MWCNT showed a synergetic effect in the PBT/PolyASA/CF (8 vol %)/MWCNT (2 vol %) composite. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48162.  相似文献   

6.
This work evaluates the influence of two types of carbonaceous fillers, carbon black (CB) and carbon nanotubes (CNTs), on the electrical, electromagnetic, and rheological properties of composites based on poly(acrylonitrile‐co‐butadiene‐co‐styrene) (ABS) prepared by the melt mixing. Electrical conductivity, electromagnetic shielding efficiency (EMI SE) in the X‐band frequency range (8–12.4 GHz), and melt flow index (MFI) results showed that ABS/CNT composites exhibit higher electrical conductivity and EMI SE, but lower MFI when compared to ABS/CB composites. The electrical conductivity of the binary composites showed an increase of around 16 orders of magnitude, when compared to neat ABS, for both fillers. Binary composites with 5 and 15 wt % of filler showed an EMI SE of, respectively, ?44 and ?83 dB for ABS/CNT, and ?9 and ?34 dB for ABS/CB. MFI for binary composites with 5 wt % were 15.45 and 0.55 g/10 min for CB and CNT, respectively. Hybrid composites ABS/CNT.CB with 3 wt % total filler and fraction 50:50 and 75:25 showed good correlation between EMI SE and MFI. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46546.  相似文献   

7.
This study focuses on the electrical properties of polycarbonate (PC)/poly(ε‐caprolactone) (PCL)‐multiwall carbon nanotube (MWCNT) nanocomposites. MWCNTs were incorporated into thermoplastic PC matrix by simple melt blending using biodegradable PCL based concentrates with MWCNT loadings (3.5 wt%). Because of the lower interfacial energy between MWCNT and PCL, the nanotubes remain in their excellent dispersion state into matrix polymer. Thus, electrical percolation in PC/PCL‐MWCNT nanocomposites was obtained at lower MWCNT loading rather than direct incorporation of MWCNT into PC matrix. AC and DC electrical conductivity of miscible PC/PCL‐MWCNT nanocomposites were studied in a broad frequency range, 101?106 Hz and resulted in low percolation threshold (pc) of 0.14 wt%, and the critical exponent (t) of 2.09 from the scaling law equation. The plot of logσDC versus p?1/3 showed linear variation and indicated the existence of tunneling conduction among MWCNTs. At low MWCNT loading, the influence of large polymeric gaps between conducting clusters is the reason for the frequency dependent electrical conductivity. Transmission electron microscopy and field emission scanning electron microscopy showed that MWCNTs were homogeneously dispersed and developed a continuous interconnected network path throughout the matrix phase and miscibility behavior of the polymer blend. POLYM. ENG. SCI., 54:646–659, 2014. © 2013 Society of Plastics Engineers  相似文献   

8.
A method is reported that involves the bulk polymerization of styrene monomer in the presence of multi-wall carbon nanotubes (MWCNTs) and polystyrene (PS) beads, for the preparation of MWCNT/PS conducting composites with a significantly lower (0.08 wt.% MWCNT) percolation threshold than previously reported. Thus, the conductivities of 7.62 × 10−5 and 1.48 × 10−3 S cm−1 were achieved in the MWCNT/PS composites through homogeneous dispersion of 0.08 and 0.26 wt.% CNTs, respectively in the in situ polymerized PS region by using 70 wt.% PS beads during the polymerization. The extent of dispersion and location of the MWCNTs in the PS matrix has been investigated with a scanning and transmission electron microscopy. The conductivity of the composites was increased with increasing wt.% of the PS beads at a constant CNT loading, indicating the formation of a more continuous network structure of the CNTs in PS matrix.  相似文献   

9.
The morphological, electrical, and thermal properties of polyurethane foam (PUF)/single conductive filler composites and PUF/hybrid conductive filler composites were investigated. For the PUF/single conductive filler composites, the PUF/nickel‐coated carbon fiber (NCCF) composite showed higher electrical conductivity and electromagnetic interference shielding effectiveness (EMI SE) than did the PUF/multiwall carbon nanotube (MWCNT) and PUF/graphite composites; therefore, NCCF is the most effective filler among those tested in this study. For the PUF/hybrid conductive fillers PUF/NCCF (3.0 php)/MWCNT (3.0 php) composites, the values of electrical conductivity and EMI SE were determined to be 0.171 S/cm and 24.7 dB (decibel), respectively, which were the highest among the fillers investigated in this study. NCCF and MWCNT were the most effective primary and secondary fillers, and they had a synergistic effect on the electrical conductivity and EMI SE of the PUF/NCCF/MWCNT composites. From the results of thermal conductivity and cell size of the PUF/conductive filler composites, it is suggested that a reduction in cell size lowers the thermal conductivity of the PUF/conductive filler composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44373.  相似文献   

10.
The electrical properties in polymer/carbon nanotube (CNT) nanocomposites are governed not only by the degree of dispersion but also to a greater extent on the aspect ratio of the CNTs in the final composites. Melt‐mixing of polymer and CNTs at high shear rate usually breaks the CNTS that lowers the aspect ratio of the nanotubes. Thus, homogeneous dispersion of CNTs while retaining the aspect ratio is a major challenge in melt‐mixing. Here, we demonstrate a novel method that involves melt‐blending of acrylonitrile‐butadiene‐styrene (ABS) and in situ polymerized polystyrene (PS)/multiwalled CNT (MWCNT) nanocomposites, to prepare electrically conducting ABS/MWCNT nanocomposites with very low CNT loading than reported. The rationale behind choosing PS/MWCNT as blending component was that ABS is reported to form miscible blend with the PS. Thus, (80/20 w/w) ABS/(PS/MWCNT) nanocomposites obtained by melt‐blending showed electrical conductivity value ≈1.27 × 10?6 S cm?1 at MWCNT loading close to 0.64 wt %, which is quite lower than previously reported value for ABS/MWCNT system prepared via solution blending. Scanning electron microscopy and differential scanning calorimetry analysis indicated the formation of homogenous and miscible blend of ABS and PS. The high temperature (100°C) storage modulus of ABS (1298 MPa) in the nanocomposites was increased to 1696 MPa in presence of 0.64 wt % of the MWCNT. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
This study compares electromagnetic interference (EMI) shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene (MWCNT/PS) composites, i.e., properties such as EMI shielding effectiveness (EMI SE), electrical conductivity, real permittivity and imaginary permittivity. The injection molded (MWCNT-aligned) samples showed lower EMI shielding properties than compression molded (randomly distributed MWCNT) samples that was attributed to lower probability of MWCNTs contacting each other due to MWCNT alignment. The compression molded samples showed higher electrical conductivity and lower electrical percolation threshold than the injection molded samples. The compression molded samples at MWCNT concentrations of 5.00 and 20.0 wt.% showed real permittivity two times and imaginary permittivity five times greater than the injection molded samples. The EMI SE for the compression molded samples at MWCNT concentrations of 5.00 and 20.0 wt.% was 15.0 and 30.0 dB, respectively, significantly greater than EMI SE for the injection molded samples. Lower EMI SE for the injection molded samples was ascribed to lower electrical conductivity, real permittivity (polarization loss) and imaginary permittivity (Ohmic loss). Comparison of the EMI shielding properties of the compression molded versus injection molded samples confirmed that EMI shielding does not require filler connectivity; however it increases with filler connectivity.  相似文献   

12.
Today, we stand at the threshold of exploring carbon nanotube (CNT) based conducting polymer nanocomposites as a new paradigm for the next generation multifunctional materials. However, irrespective of the reported methods of composite preparation, the use of CNTs in most polymer matrices to date has been limited by challenges in processing and insufficient dispersability of CNTs without chemical functionalization. Thus, development of an industrially feasible process for preparation of polymer/CNT conducting nanocomposites at very low CNT loading is essential prior to the commercialization of polymer/CNT nanocomposites. Here, we demonstrate a process technology that involves in situ bulk polymerization of methyl methacrylate monomer in the presence of multi‐wall carbon nanotubes (MWCNTs) and commercial poly(methyl methacrylate) (PMMA) beads, for the preparation of PMMA/MWCNT conducting nanocomposites with significantly lower (0.12 wt% MWCNT) percolation threshold than ever reported with unmodified commercial CNTs of similar qualities. Thus, a conductivity of 4.71 × 10?5 and 2.04 × 10?3 S cm?1 was achieved in the PMMA/MWCNT nanocomposites through a homogeneous dispersion of 0.2 and 0.4 wt% CNT, respectively, selectively in the in situ polymerized PMMA region by using 70 wt% PMMA beads during the polymerization. At a constant CNT loading, the conductivity of the composites was increased with increasing weight percentage of PMMA beads, indicating the formation of a more continuous network structure of the CNTs in the PMMA matrix. Scanning and transmission electron microscopy studies revealed the dispersion of MWCNTs selectively in the in situ polymerized PMMA phase of the nanocomposites. Copyright © 2012 Society of Chemical Industry  相似文献   

13.
We demonstrate a method that involves melt blending of polycarbonate (PC) and melt‐blended acrylonitrile butadiene styrene (ABS) with multiwall carbon nanotubes (MWCNTs) to prepare electrically conducting PC/MWCNT nanocomposites at significantly low MWCNT loading. The partial solubility of ABS in PC led to a selective dispersion of the MWCNTs in the ABS phase after melt‐blending PC and ABS. Thus, a sudden rise in electrical conductivity (∼108 orders of magnitude) of the nanocomposites was found at 0.328 vol% of MWCNT, which was explained in terms of double percolation phenomena. By optimizing the ratio of PC and the ABS–MWCNT mixture, an electrical conductivity of 5.58 × 10−5 and 7.23 × 10−3 S cm−1 was achieved in the nanocomposites with MWCNT loading as low as 0.458 and 1.188 vol%, respectively. Transmission electron microscopy revealed a good dispersion and distribution of the MWCNTs in the ABS phase, leading to the formation of continuous MWCNT network structure throughout the matrix even at very low MWCNT loading. Storage modulus and thermal stability of the PC were also increased by the presence of a small amount of MWCNTs in the nanocomposites.POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

14.
Poly(lactic acid)/poly(?‐caprolactone)/carbon nanotube (PLA/PCL/CNT) nanocomposites (NCs) were melt‐processed in a conventional industrial‐like twin‐screw extruder maintaining a constant PLA/PCL 80/20 wt. ratio. CNTs located in the thermodynamically favored PCL phase and, as a result, the “sea–island” morphology of the unfilled blend was replaced by a more continuous PCL dispersed phase in the ternary NCs. Rheological and electrical percolation took place at the same CNT contents (over 1.2 wt %) that TEM images suggest continuity of the PCL phase. The electrical and the low‐strain mechanical behaviors upon CNT addition were similar in the reference binary PLA/CNT and ternary PLA/PCL/CNT NCs. In the percolated NCs, the conductivity became 106–107 times higher than in the insulating compositions, while the Young modulus increased linearly upon the addition of CNT (12% increase at 4.9 wt % loading). Moreover, all the PLA/PCL/CNT NCs showed a ductile behavior (elongation at break >130%) similar to that of the unfilled PLA/PCL blend (140%), in contrast to the brittle behavior of binary PLA/CNT NCs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45265.  相似文献   

15.
The electrical conductivity and electromagnetic interference (EMI) shielding effectiveness of the composites of polypropylene/poly(lactic acid) (PP/PLA) (70/30, wt %) with single filler of multiwall carbon nanotube (CNT) or hybrid fillers of nickel‐coated carbon fiber (CF) and CNT were investigated. For the single filler composite, higher electrical conductivity was observed when the PP‐g‐maleic anhydride was added as a compatibilizer between the PP and PLA. For the composite of the PP/PLA (70/30)/CF (20 phr)/CNT (5 phr), the composite prepared by injection molding observed a higher EMI shielding effectiveness of 50.5 dB than the composite prepared by screw extrusion (32.3 dB), demonstrating an EMI shielding effectiveness increase of 49.8%. The higher values in EMI shielding effectiveness and electrical conductivity of the PP/PLA/CF (20 phr)/CNT (5 phr) composite seemed mainly because of the increased CF length when the composites were prepared using injection molding machine, compared with the composites prepared by screw extrusion. This result suggests that the fiber length of the conductive filler is an important factor in obtaining higher values of electrical conductivity and EMI shielding effectiveness of the PP/PLA/CF/CNT composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45222.  相似文献   

16.
Novel polymer nanocomposites comprising of MnO2 nanotubes (MNTs), functionalized multiwalled carbon nanotubes (f-MWCNTs), and polyvinylidene fluoride (PVDF) were synthesized. Homogeneous distribution of f-MWCNTs and MNTs in PVDF matrix were confirmed by field emission scanning electron microscopy. Electrical conductivity measurements were performed on these polymer composites using four probe technique. The addition of 2 wt.% of MNTs (2 wt.%, f-MWCNTs) to PVDF matrix results in an increase in the electrical conductivity from 10-16S/m to 4.5 × 10-5S/m (3.2 × 10-1S/m). Electromagnetic interference shielding effectiveness (EMI SE) was measured with vector network analyzer using waveguide sample holder in X-band frequency range. EMI SE of approximately 20 dB has been obtained with the addition of 5 wt.% MNTs-1 wt.% f-MWCNTs to PVDF in comparison with EMI SE of approximately 18 dB for 7 wt.% of f-MWCNTs indicating the potential use of the present MNT/f-MWCNT/PVDF composite as low-cost EMI shielding materials in X-band region.  相似文献   

17.
In this report, multiwalled carbon nanotubes (CNT) embedded poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) microspheres (CNT/SEBS) were prepared by solvent evaporation method. Reduced graphene oxide (rGO) nanosheets were used to cover the surface of CNT/SEBS microspheres. The CNT/SEBS/rGO nanocomposites with special segregated conductive network were fabricated by hot pressing these as-prepared complex microspheres. The morphology, electrical percolation threshold, electrical conductivity, and electromagnetic interference (EMI) shielding effectiveness (SE) of CNT/SEBS/rGO composites were characterized. The shielding mechanisms were discussed in detail. Analysis of electrical conductive performance shows that the electrical percolation threshold of rGO is 0.22 vol %. Results of EMI shielding test confirmed the synergistic effect between CNT and rGO. The EMI SE of the composite filled by 2.1 vol % CNT and 3.35 vol % rGO can achieve 26 dB in 8.2− 12.4 GHz (X band), which exceeds the basic requirement for commercial application (20 dB). Its reflectance coefficient (19–41%) indicates that the most part of incident electromagnetic (EM) wave energy is attenuated through absorption mechanism. This kind of absorptive EMI shielding material can be applied without serious secondary EM radiation pollution problems. The effects of filler content, molding temperature on EMI SE, and shielding mechanism were also investigated. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48542.  相似文献   

18.
Electrically conducting rubbery composites based on thermoplastic polyurethane (TPU) and carbon nanotubes (CNTs) were prepared through melt blending using a torque rheometer equipped with a mixing chamber. The electrical conductivity, morphology, rheological properties and electromagnetic interference shielding effectiveness (EMI SE) of the TPU/CNT composites were evaluated and also compared with those of carbon black (CB)‐filled TPU composites prepared under the same processing conditions. For both polymer systems, the insulator–conductor transition was very sharp and the electrical percolation threshold at room temperature was at CNT and CB contents of about 1.0 and 1.7 wt%, respectively. The EMI SE over the X‐band frequency range (8–12 GHz) for TPU/CNT and TPU/CB composites was investigated as a function of filler content. EMI SE and electrical conductivity increased with increasing amount of conductive filler, due to the formation of conductive pathways in the TPU matrix. TPU/CNT composites displayed higher electrical conductivity and EMI SE than TPU/CB composites with similar conductive filler content. EMI SE values found for TPU/CNT and TPU/CB composites containing 10 and 15 wt% conductive fillers, respectively, were in the range ?22 to ?20 dB, indicating that these composites are promising candidates for shielding applications. © 2013 Society of Chemical Industry  相似文献   

19.
The electrical and electromagnetic interference shielding effectiveness (EMI SE) properties of multi-walled carbon nanotubes/polycarbonate (MWCNT/PC) composites are investigated. The composites were prepared by diluting masterbatch (15 wt.% MWCNT) using a Haake mixer and then injection-molded into a dog-bone mold. Various MWCNT alignments were created by changing operating conditions. Electrical resistivity measurements were carried out at three different areas at both parallel and perpendicular to the flow direction. The results showed higher resistivity and percolation threshold at higher alignments in both parallel and perpendicular to the flow direction. By applying Ohm’s law it was seen that after percolation, the field emission mechanisms are more important at higher orientations. Higher MWCNT alignments were observed in areas with higher resistivities, and this was verified using SEM, TEM and Raman spectroscopy techniques. Additionally, EMI SE measurements were done on compression-molded samples at different concentrations and thicknesses. The results showed that both EMI SE by reflection and absorption increased with increase in MWCNT loading and shielding material thickness.  相似文献   

20.
The microstructure, electromagnetic interference (EMI) shielding effectiveness (SE), DC electrical conductivity, AC electrical conductivity and complex permittivity of nanostructured polymeric materials filled with three different carbon nanofillers of different structures and intrinsic electrical properties were investigated. The nanofillers were multiwall carbon nanotubes (MWCNT), carbon nanofibers (CNF) and high structure carbon black (HS-CB) nanoparticles and the polymer was acrylonitrile-butadiene-styrene (ABS). In addition, the EMI SE mechanisms and the relation between the AC electrical conductivity in the X-band frequency range and the DC electrical conductivity were studied. The nanocomposites were fabricated by solution mixing and characterized by uniform dispersion of the nanofillers within the polymer matrix. It was found that, at the same nanofiller loading, the EMI SE, permittivity and electrical conductivity of the nanocomposites decreased in the following order: MWCNT > CNF > CB. MWCNT based nanocomposites exhibited the lowest electrical percolation threshold and the highest EMI SE owning to the higher aspect ratio and electrical conductivity of MWCNT compared to CNF and HS-CB. The AC conductivity in the X-band frequency range was found to be independent of frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号