首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of polyethylene glycol (PEG) on the mechanical and thermal properties of poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) blends was examined. Overall, it was found that PEG acted as an effective plasticizer for the PLA phase in these microphase‐separated blends, increasing the elongation at break in all blends and decreasing the Tg of the PLA phase. Significant effects on other properties were also observed. The tensile strength and Young's modulus both decreased with increasing PEG content in the blends. In contrast, the elongation at break increased with the addition of PEG, suggesting that PEG acted as a plasticizer in the polymer blends. Scanning electron microscope images showed that the fracture mode of PLA changed from brittle to ductile with the addition of PEG in the polymer blends. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43044.  相似文献   

2.
Poly(lactic acid) (PLA), a physical blend of PLA and thermoplastic cassava starch (TPCS) (PLA‐TPCS), and reactive blends of PLA with TPCS using maleic anhydride as compatibilizer with two different peroxide initiators [i.e., 2,5‐bis(tert‐butylperoxy)‐2,5‐dimethylhexane (L101) and dicumyl peroxide (DCP)] PLA‐g‐TPCS‐L101 and PLA‐g‐TPCS‐DCP were produced and characterized. Blends were produced using either a mixer unit or twin‐screw extruder. Films for testing were produced by compression molding and cast film extrusion. Morphological, mechanical, thermomechanical, thermal, and optical properties of the samples were assessed. Blends produced with the twin‐screw extruder resulted in a better grade of mixing than blends produced with the mixer. Reactive compatibilization improved the interfacial adhesion of PLA and TPCS. Scanning electron microscopy images of the physical blend showed larger TPCS domains in the PLA matrix due to poor compatibilization. However, reactive blends revealed smaller TPCS domains and better interfacial adhesion of TPCS to the PLA matrix when DCP was used as initiator. Reactive blends exhibited high values for elongation at break without an improvement in tensile strength. PLA‐g‐TPCS‐DCP provides promising properties as a tougher biodegradable film. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46140.  相似文献   

3.
Poly(lactic acid) PLA was plasticized with low molecular weight poly(ethylene glycol) PEG‐200 to improve the ductility of PLA, while maintaining the plasticizer content at maximum 10 wt%. Low molecular weight of PEG enables increased miscibility with PLA and more efficient reduction of glass transition temperature (Tg). This effect is enhanced not only by the low molecular weight but also by its higher content. The tensile properties demonstrated that the addition of PEG‐200 to PLA led to an increase of elongation at break (>7000%), but a decrease of both tensile strength and tensile modulus. The plasticization of the PLA with PEG‐200 effectively lowers Tg as well as cold‐crystallization temperature, increasing with plasticizer content. SEM micrographs reveal plastic deformation and few long threads of a deformed material are discernible on the fracture surface. The use of low molecular weight PEG‐200 reduces the intermolecular force and increases the mobility of the polymeric chains, thereby improving the flexibility and plastic deformation of PLA. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4576–4580, 2013  相似文献   

4.
Both poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG) are biodegradable polymers, blending PLA with PEG is expected to toughen PLA matrix while maintaining its biodegradability. In this study, PLA/PEG blends in different ratios were prepared through triple‐screw extruder, and the foaming behavior was investigated using supercritical carbon dioxide as physical blowing agent. The mechanical, thermal, rheological properties, and crystallization behavior were also studied. By the incorporation of PEG, the impact strength of the PLA/PEG blends improved by 98% with the specimens fractured in a ductile mode. The crystallization process of the blends was accelerated, and the crystallinity was significantly increased to 45.1%. The viscoelasticity of the PLA/PEG matrix was weakened, and the cells tended to break at the cell wall during cell expansion; thus, a highly interconnected structure with a maximum porosity of 82.3% was obtained. Moreover, the PLA/PEG blends exhibited higher cell densities and smaller cell size, compared to their neat counterparts. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3066–3073, 2013  相似文献   

5.
Poly(L ‐lactic acid) (PLLA: Mw = 19.4 × 104)/poly(ethylene glycol) (PEG: Mw = 400) blend films were formed by use of a solvent‐cast technique. The properties and structures of these blend films were investigated. The Young's modulus of the PLLA decreased from 1220 to 417 MPa with the addition of PEG 5 wt %, but the elongation at break increased from 19 to 126%. The melting point of PLLA linearly decreased with increases in the PEG content (i.e., pure PLLA: 172.5°C, PLLA/PEG = 60/40 wt %: 159.6°C). The PEG 20 wt % blend film had a porous structure. The pore diameter was 3–5 μm. The alkali hydrolysis rate of this blend film was accelerated due to its porous structure. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 965–970, 2004  相似文献   

6.
Polymer blend systems offer a versatile approach for tailoring the properties of polymer materials for specific applications. In this study, we investigated the compatibility of polybutylene terephthalate (PBT) and poly(ethylene glycol) (PEG) blends processed using a twin-screw extruder, with the aim of enhancing their compatibility. Phthalic anhydride (PAn) and phthalic acid (PAc) were used as potential compatibilizers at different concentrations to improve interfacial interactions between PBT and PEG. Blend morphologies were characterized using scanning electron microscopy, which revealed improved interfacial compatibility and reduced phase separation with the incorporation of small amounts of PAn and PAc. Differential scanning calorimetry analysis indicated changes in the melting temperature (Tm) and glass transition temperature (Tg) of the blends owing to the compatibilizing effects of PAn and PAc. Dynamic mechanical analysis further corroborated the influence of the compatibilizers on the Tg and viscoelastic behavior. Thermogravimetric analysis demonstrated enhanced thermal stability with the addition of either PAn or PAc. Rheological measurements indicated an increase in complex viscosity with increasing compatibilizer content, indicating improved compatibility. The degradation point (Td) of PBT/PEG blend increased from 158 to 200 and 319°C with the incorporation of 5 phr PAn and 2 phr PAc, respectively. Mechanical properties, including tensile strength, Young's modulus, and Izod impact strength, were evaluated. For instance, the tensile strength of PBT/PEG blend was enhanced from 43.5 to 48.7 and 49.7 MPa by incorporating 5 phr PAn and 2 phr PAc, respectively. However, the impact strength of PBT/PEG blend increased from 3.0 to 4.3 and 4.2 kJ/m2 with the addition of 1 phr PAn and 1 phr PAc, respectively. The findings demonstrated that adding 5 phr PAn or 2 phr PAc to the PBT/PEG blends was advantageous, achieving a harmony of performance benefits and compromises. Rheological observations contributed significantly to the mechanical and thermal properties. Overall, the study highlights the significance of utilizing PAn and PAc as effective compatibilizers for enhancing the properties of PBT/PEG blends, making them potential candidates for various applications.  相似文献   

7.
聚乳酸/聚乙二醇共混物的结晶与降解行为   总被引:1,自引:0,他引:1       下载免费PDF全文
针对聚乳酸(PLLA)亲水性差、降解周期长的问题,利用与亲水性高分子聚乙二醇(PEG)共混的方法对其进行改性。采用转矩流变仪制备了不同组成的PLLA/PEG共混物颗粒,系统研究了PLLA/PEG共混物的结晶和熔融、亲水性和在酸碱介质中的降解行为。结果表明,PEG的加入增强了共混物中PLLA的结晶能力,提高了PLLA在降温过程中的熔融结晶温度。PLLA/PEG共混物在等温结晶中表现出比纯PLLA更快的结晶速度。通过改变PLLA/PEG共混物的组成,可调控材料的表面亲水性和降解速率。随着PEG含量的增多,PLLA/PEG共混物的表面接触角降低。PLLA与PLLA/PEG共混物均可在水溶液中降解,共混物的降解速率高于纯PLLA,随着PEG含量的升高和降解液中酸碱浓度的提高,PLLA/PEG共混物的降解速率加快。  相似文献   

8.
Poly(lactic acid) (PLA)/starch blends were prepared blending with dioctyl maleate (DOM). DOM acted as a compatibilizer at low concentrations (below 5%), and markedly improved tensile strength of the blend. However, DOM functioned as a plasticizer at concentrations over 5%, significantly enhancing elongation. Compatibilization and plasticization took place simultaneously according to the analysis of, for example, mechanical properties and thermal behavior. With DOM as a polymeric plasticizer, thermal loss in the blends was not significant. Water absorption of PLA/starch blends increased with DOM concentration. DOM leaching in an aqueous environment was inhibited. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1697–1704, 2004  相似文献   

9.
The present research aims to improve the compatibility between relatively hydrophobic poly(lactic acid) (PLA) and hydrophilic thermoplastic starch (TPS) and the properties of the PLA/TPS blends by replacing TPS from native cassava starch (TPSN) with TPS from acetylated starch (TPSA). The effects of the degree of acetylation (DA) of acetylated starch, that is, 0.021, 0.031, and 0.074, on the morphological characteristics and properties of PLA/TPS blend are investigated. The melt blends of PLA and TPS with a weight proportion of PLA:TPS of 50:50 are fabricated and then blown into films. Scanning electron microscopy confirms the dispersion of TPS phase in the PLA matrix. Better dispersion and smaller size of the TPS phase are observed for the PLA/TPSA blend films with low DA of acetylated starch, resulting in improved tensile and barrier properties and increased storage modulus, thermal stability, and Tg, Tcc, and Tm of PLA. Elongation at break of the PLA/TPSA blend increases up to 57%, whereas its water vapor permeability and oxygen permeability decrease about 15%. The obtained PLA/TPSA blend films have the potential to be applied as biodegradable flexible packaging.  相似文献   

10.
Maleated poly(lactic acid) (PLA-g-MA) was prepared through melt grafting of maleic anhydride onto a PLA backbone with the aid of a radical initiator. PLA-g-MA thus formed was incorporated into PLA/polyamide 11 (PA11) blends as a reactive compatibilizer. By morphological observation, it was assessed that PLA-g-MA lowered the interfacial energy and strengthened the interface between PLA and PA11. However, the compatibilized PLA/PA11 blends did not show significant improvement of impact strength compared with noncompatibilized PLA/PA11 blends. Measurements of the molecular weight and impact strength of PLAs compounded with various amounts of radical initiators revealed that decreased molecular weight of PLA by the radical initiator used for the preparation of PLA-g-MA is responsible for this unexpected result. To compensate the decrease of the molecular weight, a crosslinking agent was incorporated in the preparation step of PLA-g-MA. It was found that the crosslinking agent is effective in preventing the molecular weight reduction. As a result, the impact strength of the PLA/PA11 blend was enhanced to a great extent by the PLA-g-MA prepared with the crosslinking agent.  相似文献   

11.
To improve the processability of micropolymer‐based devices used for biomedical applications, poly(lactic acid) (PLA) was melt‐blended with poly(ethylene glycol)s (PEGs) of different molecular weights (MWs; weight‐average MWs = 200, 800, 2000, and 4000; these PEGS are referred to as PEG200, PEG800, PEG2000, and PEG4000, respectively, in this article). The thermal properties, mechanical properties, and rheological properties of the PLA and the PLA–PEG blends were investigated. The tensile samples’ morphologies showed that the low‐MW PEGs filled molds well. The rheological properties confirmed that the low‐MW PEGs decreased the complex viscosity, and improved the processability. With decreasing PEG MW, the PLA glass‐transition temperature decreased. The nanoindenter data show that the addition of PEG decreased the modulus and hardness of PLA. The morphologies of the tensile samples showed that with increasing PEG MW, the thicknesses of the core layers increased gradually. The elongation at break was improved by approximately 247% with the addition of PEG200. Such methods can produce easily processed biological materials for producing biomedical products. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45194.  相似文献   

12.
This work aimed to study, for the first time, the melt blending of poly(lactic acid) (PLA) and ethylene acrylic acid (EAA) copolymer by a novel vane extruder to toughen PLA. The phase morphologies, mechanical, and rheological properties of the PLA/EAA blends of three weight ratios (90/10, 80/20, and 70/30) were investigated. The results showed that the addition of EAA improves the toughness of PLA at the expense of the tensile strength to a certain degree and leads the transition from brittle fracture of PLA into ductile fracture. The 80/20 (w/w) PLA/EAA blend presents the maximum elongation at break (13.93%) and impact strength (3.18 kJ/m2), which is 2.2 and 1.2 times as large as those of PLA, respectively. The 90/10 and 80/20 PLA/EAA blends exhibit droplet‐matrix morphologies with number average radii of 0.30–0.73 μm, whereas the 70/30 PLA/EAA blend presents an elongated co‐continuous structure with large radius (2.61 μm) of EAA phase and there exists PLA droplets in EAA phase. These three blends with different phase morphologies display different characteristic linear viscoelastic properties in the low frequency region, which were investigated in terms of their complex viscosity, storage modulus, loss tangent, and Cole‐Cole plots. Specially, the 80/20 PLA/EAA blend presents two circular arcs on its Cole‐Cole plot. So, the longest relaxation time of the 80/20 blend was obtained from its complex viscosity imaginary part plot, and the interfacial tension between PLA and EAA, which is 4.4 mN/m, was calculated using the Palierne model. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40146.  相似文献   

13.
Poly(lactic acid) (PLA) is a biodegradable polymer, but its applications are limited by its high cost. Blending granular starch with PLA reduces the cost, but the blend has poor strength properties. In this study, a 55/45 (w/w) mixture of PLA (weight‐average molecular weight = 120,000 Da) and dried wheat starch was blended thermally in an intensive mixer with or without a low level of methylenediphenyl diisocyanate (MDI). Blends with MDI had enhanced mechanical properties that could be explained by the in situ formation of a block copolymer acting as a compatibilizer. Scanning electron micrographs showed reduced interfacial tension between the two phases. The presence of MDI also enhanced the mechanical properties of the blend at temperatures above the glass‐transition temperature. Water uptakes by the PLA/starch blends with and without MDI did not differ. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1761–1767, 2001  相似文献   

14.
Thermoplastic poly(glycerol sebacate) (TMPGS) elastomers originating from three prepolymers with different molecular weights were prepared first, and then the structure and properties were studied. Specifically, by swelling tests, gel permeation chromatography, X‐ray diffraction, and differential scanning calorimetry, the crosslinking densities, sol contents and compositions, crystallization, and thermal performances of three TMPGSs were examined. Finally, the degradability in a 37°C phosphate‐buffered saline solution (pH = 7.4) was also illuminated. The three TMPGSs had similar chemical structures, but the different molecular weights of the prepolymers influenced their final compositions and properties to a great extent. Furthermore, both hydrogen bonding and plasticization action in the elastomers played important roles in balancing the overall properties of the TMPGS elastomers. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1131–1137, 2007  相似文献   

15.
Triethyl citrate (TC) was added as a plasticizer to a blend of poly(lactic acid) (PLA) and starch in the presence of methylenediphenyl diisocyanate (MDI). As expected, TC improved the elongation at break and toughness and, at the same time, decreased the tensile strength and modulus. However, TC did not significantly affect the coupling effects of MDI on starch and PLA. The tensile strength of the blend with MDI was much greater than the tensile strength without MDI at the same TC level. The tensile properties of the blend changed dramatically as the TC concentration increased from 5 to 12.5%. At a TC concentration of 7.5%, the blend produced desirable elongation and toughness with fairly good tensile strength. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2947–2955, 2003  相似文献   

16.
Blends of two biodegradable and semicrystalline polymers, poly(L ‐lactic acid) (PLLA) and poly(butylene succinate‐co‐adipate) (PBSA), were prepared by solvent casting in different compositions. The miscibility, morphology, and thermal behavior of the blends were investigated using differential scanning calorimetry and optical microscopy. PLLA was found to be immiscible with PBSA as evidenced by two independent glass transitions and biphasic melt. Nonisothermal crystallization measurements showed that fractionated crystallization behavior occurred when PBSA was dispersed as droplets, evidenced by multiple crystallization peaks at different supercooling levels. Crystallization and morphology of the blends were also investigated through two‐step isothermal crystallization. For blends where PLLA was the major component, different content of PBSA did not make a significant difference in the crystallization mechanism and rate of PLLA. For blends where PBSA was the major component, the crystallization rate of PBSA decreased with increasing PLLA content, while the crystallization mechanism did not change. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

17.
Wei-Chi Lai  Wen-Bin Liau   《Polymer》2003,44(26):8103-8109
The thermo-oxidative degradation of poly(ethylene glycol)/poly( -lactic acid) (PEG/PLLA) blends was studied by infra-red spectroscopy (IR), differential scanning calorimetry (DSC), gel permeation chromatography (GPC) and thermogravimetry (TGA). The thermo-oxidative degradation of PEG occurred after a period time of aging in air at 80 °C. The mechanism of thermo-oxidative degradation of PEG was found to be the random chain scission of the main chain. As PEG blending with PLLA, the existence of PLLA appeared to enhance the thermo-oxidative degradation of PEG. The enhancement of thermo-oxidative degradation increased first and then decreased with the increase of PLLA. The results could be attributed to the ease of abstraction of the carboxylic hydrogen (–COOH) of PLLA, which enhanced the thermo-oxidative degradation of PEG. Also, the dilution effect of PLLA on the concentration of free radicals was an important factor of the thermo-oxidative degradation.  相似文献   

18.
Incompatibility of poly(lactic acid)/poly(?‐caprolactone) (PLA/PCL) (80:20) and (70:30) blends were modified by incorporation of a small amount of polyoxymethylene (POM) (≤3 phr). Impact of POM on microstructures and tensile property of the blends were investigated. It is found that the introduction of POM into the PLA/PCL blends significantly improves their tensile property. With increasing POM loading from zero to 3 phr, elongation at break increases from 93.2% for the PLA/PCL (70:30) sample to 334.8% for the PLA/PCL/POM (70:30:3) sample. A size reduction in PCL domains and reinforcement in interfacial adhesion with increasing POM loading are confirmed by SEM observations. The compatibilization effect of POM on PLA/PCL blends can be attributed to hydrogen bonding between methylene groups of POM and carbonyl groups of PLA and PCL. In addition, nonisothermal and isothermal crystallization behaviors of PLA/PCL/POM (70:30:x) samples were investigated by using differential scanning calorimetry and wide angle X‐ray diffraction measurements. The results indicate that the crystallization dynamic of PLA matrix increases with POM loadings. It can be attributed to the fact that POM crystals have a nucleating effect on PLA. While crystallization temperature is 100 °C, crystallization half‐time can reduce from 9.4 to 2.0 min with increasing POM loading from zero to 3 phr. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46536.  相似文献   

19.
Poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG) were melt-blended and extruded into films in the PLA/PEG ratios of 100/0, 90/10, 70/30, 50/50, and 30/70. It was concluded from the differential scanning calorimetry and dynamic mechanical analysis results that PLA/PEG blends range from miscible to partially miscible, depending on the concentration. Below 50% PEG content the PEG plasticized the PLA, yielding higher elongations and lower modulus values. Above 50% PEG content the blend morphology was driven by the increasing crystallinity of PEG, resulting in an increase in modulus and a corresponding decrease in elongation at break. The tensile strength was found to decrease in a linear fashion with increasing PEG content. Results obtained from enzymatic degradation show that the weight loss for all of the blends was significantly greater than that for the pure PLA. When the PEG content was 30% or lower, weight loss was found to be primarily due to enzymatic degradation of the PLA. Above 30% PEG content, the weight loss was found to be mainly due to the dissolution of PEG. During hydrolytic degradation, for PLA/PEG blends up to 30% PEG, weight loss occurs as a combination of degradation of PLA and dissolution of PEG. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1495–1505, 1997  相似文献   

20.
Poly(lactic acid) (PLA) and wheat starch are biodegradable polymers derived from renewable sources. A previous study showed that thermally blending starch and PLA in the presence of methylenediphenyl diisocyanate (MDI) enhanced the mechanical properties of the blends. In this work, blends of PLA with various levels of wheat starch and MDI were hot mixed at 180°C then hot‐pressure molded at 175°C to form test specimens. The blends were characterized for mechanical properties, fracture microstructure, and water absorption. Pure PLA had a tensile strength of 62.7 MPa and elongation of 6.5%. The blend with 45% wheat starch and 0.5 wt % MDI gave the highest tensile strength of about 68 MPa with about 5.1% elongation. The blend with 20% starch and 0.5 wt % MDI had the lowest tensile strength of about 58 MPa with about 5.6% elongation. Dynamic mechanical analysis showed that storage modulus increased and tan δ decreased as starch level increased, but almost leveled off when starch level reached 45% or higher. Water absorption of the blends increased significantly with starch content. Yet the blend, if water proofed on its surface, has potential for short‐term disposable applications. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1257–1262, 2002; DOI 10.1002/app.10457  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号