首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
p–n junctions play an important role in modern semiconductor electronics and optoelectronics, and field‐effect transistors are often used for logic circuits. Here, gate‐controlled logic rectifiers and logic optoelectronic devices based on stacked black phosphorus (BP) and tungsten diselenide (WSe2) heterojunctions are reported. The gate‐tunable ambipolar charge carriers in BP and WSe2 enable a flexible, dynamic, and wide modulation on the heterojunctions as isotype (p–p and n–n) and anisotype (p–n) diodes, which exhibit disparate rectifying and photovoltaic properties. Based on such characteristics, it is demonstrated that BP–WSe2 heterojunction diodes can be developed for high‐performance logic rectifiers and logic optoelectronic devices. Logic optoelectronic devices can convert a light signal to an electric one by applied gate voltages. This work should be helpful to expand the applications of 2D crystals.  相似文献   

2.
2D transition metal dichalcogenides (TMDs) have exhibited strong application potentials in new emerging electronics because of their atomic thin structure and excellent flexibility, which is out of field of tradition silicon technology. Similar to 3D p–n junctions, 2D p–n heterojunctions by laterally connecting TMDs with different majority charge carriers (electrons and holes), provide ideal platform for current rectifiers, light‐emitting diodes, diode lasers and photovoltaic devices. Here, growth and electrical studies of atomic thin high‐quality p–n heterojunctions between molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2) by one‐step chemical vapor deposition method are reported. These p–n heterojunctions exhibit high built‐in potential (≈0.7 eV), resulting in large current rectification ratio without any gate control for diodes, and fast response time (≈6 ms) for self‐powered photodetectors. The simple one‐step growth and electrical studies of monolayer lateral heterojunctions open up the possibility to use TMD heterojunctions for functional devices.  相似文献   

3.
Van der Waals (vdW) heterostructures have received intense attention for their efficient stacking methodology with 2D nanomaterials in vertical dimension. However, it is still a challenge to scale down the lateral size of vdW heterostructures to the nanometer and make proper contacts to achieve optimized performances. Here, a carbon‐nanotube‐confined vertical heterostructure (CCVH) is employed to address this challenge, in which 2D semiconductors are asymmetrically sandwiched by an individual metallic single‐walled carbon nanotube (SWCNT) and a metal electrode. By using WSe2 and MoS2, the CCVH can be made into p‐type and n‐type field effect transistors with high on/off ratios even when the channel length is 3.3 nm. A complementary inverter was further built with them, indicating their potential in logic circuits with a high integration level. Furthermore, the Fermi level of SWCNTs can be efficiently modulated by the gate voltage, making it competent for both electron and hole injection in the CCVHs. This unique property is shown by the transition of WSe2 CCVH from unipolar to bipolar, and the transition of WSe2/MoS2 from p–n junction to n–n junction under proper source–drain biases and gate voltages. Therefore, the CCVH, as a member of 1D/2D mixed heterostructures, shows great potentials in future nanoelectronics and nano‐optoelectronics.  相似文献   

4.
Monolayers of transition metal dichalcogenides (TMDCs) have attracted a great interest for post‐silicon electronics and photonics due to their high carrier mobility, tunable bandgap, and atom‐thick 2D structure. With the analogy to conventional silicon electronics, establishing a method to convert TMDC to p‐ and n‐type semiconductors is essential for various device applications, such as complementary metal‐oxide‐semiconductor (CMOS) circuits and photovoltaics. Here, a successful control of the electrical polarity of monolayer WSe2 is demonstrated by chemical doping. Two different molecules, 4‐nitrobenzenediazonium tetrafluoroborate and diethylenetriamine, are utilized to convert ambipolar WSe2 field‐effect transistors (FETs) to p‐ and n‐type, respectively. Moreover, the chemically doped WSe2 show increased effective carrier mobilities of 82 and 25 cm2 V?1s?1 for holes and electrons, respectively, which are much higher than those of the pristine WSe2. The doping effects are studied by photoluminescence, Raman, X‐ray photoelectron spectroscopy, and density functional theory. Chemically tuned WSe2 FETs are integrated into CMOS inverters, exhibiting extremely low power consumption ( ≈ 0.17 nW). Furthermore, a p‐n junction within single WSe2 grain is realized via spatially controlled chemical doping. The chemical doping method for controlling the transport properties of WSe2 will contribute to the development of TMDC‐based advanced electronics.  相似文献   

5.
Lateral heterogeneities in atomically thin 2D materials such as in‐plane heterojunctions and grain boundaries (GBs) provide an extrinsic knob for manipulating the properties of nano‐ and optoelectronic devices and harvesting novel functionalities. However, these heterogeneities have the potential to adversely affect the performance and reliability of the 2D devices through the formation of nanoscopic hot‐spots. In this report, scanning thermal microscopy (SThM) is utilized to map the spatial distribution of the temperature rise within monolayer transition metal dichalcogenide (TMD) devices upon dissipating a high electrical power through a lateral interface. The results directly demonstrate that lateral heterojunctions between MoS2 and WS2 do not largely impact the distribution of heat dissipation, while GBs of MoS2 appreciably localize heating in the device. High‐resolution scanning transmission electron microscopy reveals that the atomic structure is nearly flawless around heterojunctions but can be quite defective near GBs. The results suggest that the interfacial atomic structure plays a crucial role in enabling uniform charge transport without inducing localized heating. Establishing such structure–property‐processing correlation provides a better understanding of lateral heterogeneities in 2D TMD systems which is crucial in the design of future all‐2D electronic circuitry with enhanced functionalities, lifetime, and performance.  相似文献   

6.
2D metal‐semiconductor heterostructures based on transition metal dichalcogenides (TMDs) are considered as intriguing building blocks for various fields, such as contact engineering and high‐frequency devices. Although, a series of p–n junctions utilizing semiconducting TMDs have been constructed hitherto, the realization of such a scheme using 2D metallic analogs has not been reported. Here, the synthesis of uniform monolayer metallic NbS2 on sapphire substrate with domain size reaching to a millimeter scale via a facile chemical vapor deposition (CVD) route is demonstrated. More importantly, the epitaxial growth of NbS2‐WS2 lateral metal‐semiconductor heterostructures via a “two‐step” CVD method is realized. Both the lateral and vertical NbS2‐WS2 heterostructures are achieved here. Transmission electron microscopy studies reveal a clear chemical modulation with distinct interfaces. Raman and photoluminescence maps confirm the precisely controlled spatial modulation of the as‐grown NbS2‐WS2 heterostructures. The existence of the NbS2‐WS2 heterostructures is further manifested by electrical transport measurements. This work broadens the horizon of the in situ synthesis of TMD‐based heterostructures and enlightens the possibility of applications based on 2D metal‐semiconductor heterostructures.  相似文献   

7.
Developing processes to controllably dope transition‐metal dichalcogenides (TMDs) is critical for optical and electrical applications. Here, molecular reductants and oxidants are introduced onto monolayer TMDs, specifically MoS2, WS2, MoSe2, and WSe2. Doping is achieved by exposing the TMD surface to solutions of pentamethylrhodocene dimer as the reductant (n‐dopant) and “Magic Blue,” [N(C6H4p‐Br)3]SbCl6, as the oxidant (p‐dopant). Current–voltage characteristics of field‐effect transistors show that, regardless of their initial transport behavior, all four TMDs can be used in either p‐ or n‐channel devices when appropriately doped. The extent of doping can be controlled by varying the concentration of dopant solutions and treatment time, and, in some cases, both nondegenerate and degenerate regimes are accessible. For all four TMD materials, the photoluminescence intensity; for all four materials the PL intensity is enhanced with p‐doping but reduced with n‐doping. Raman and X‐ray photoelectron spectroscopy (XPS) also provide insight into the underlying physical mechanism by which the molecular dopants react with the monolayer. Estimates of changes of carrier density from electrical, PL, and XPS results are compared. Overall a simple and effective route to tailor the electrical and optical properties of TMDs is demonstrated.  相似文献   

8.
2D atomic sheets of transition metal dichalcogenides (TMDs) have a tremendous potential for next‐generation optoelectronics since they can be stacked layer‐by‐layer to form van der Waals (vdW) heterostructures. This allows not only bypassing difficulties in heteroepitaxy of lattice‐mismatched semiconductors of desired functionalities but also providing a scheme to design new optoelectronics that can surpass the fundamental limitations on their conventional semiconductor counterparts. Herein, a novel 2D h‐BN/p‐MoTe2/graphene/n‐SnS2/h‐BN p–g–n junction, fabricated by a layer‐by‐layer dry transfer, demonstrates high‐sensitivity, broadband photodetection at room temperature. The combination of the MoTe2 and SnS2 of complementary bandgaps, and the graphene interlayer provides a unique vdW heterostructure with a vertical built‐in electric field for high‐efficiency broadband light absorption, exciton dissociation, and carrier transfer. The graphene interlayer plays a critical role in enhancing sensitivity and broadening the spectral range. An optimized device containing 5?7‐layer graphene has been achieved and shows an extraordinary responsivity exceeding 2600 A W?1 with fast photoresponse and specific detectivity up to ≈1013 Jones in the ultraviolet–visible–near‐infrared spectrum. This result suggests that the vdW p–g–n junctions containing multiple photoactive TMDs can provide a viable approach toward future ultrahigh‐sensitivity and broadband photonic detectors.  相似文献   

9.
Heterojunctions formed from low‐dimensional materials can result in photovoltaic and photodetection devices displaying exceptional physical properties and excellent performance. Herein, a mixed‐dimensional van der Waals (vdW) heterojunction comprising a 1D n‐type Ga‐doped CdS nanowire and a 2D p‐type MoTe2 flake is demonstrated; the corresponding photovoltaic device exhibits an outstanding conversion efficiency of 15.01% under illumination with white light at 650 µW cm?2. A potential difference of 80 meV measured, using Kelvin probe force microscopy, at the CdS–MoTe2 interface confirms the separation and accumulation of photoexcited carriers upon illumination. Moreover, the photodetection characteristics of the vdW heterojunction device at zero bias reveal a rapid response time (<50 ms) and a photoresponsivity that are linearly proportional to the power density of the light. Interestingly, the response of the vdW heterojunction device is negligible when illuminated at 580 nm; this exceptional behavior is presumably due to the rapid rate of recombination of the photoexcited carriers of MoTe2. Such mixed‐dimensional vdW heterojunctions appear to be novel design elements for efficient photovoltaic and self‐driven photodetection devices.  相似文献   

10.
Van der Waals (vdW) epitaxy allows the fabrication of various heterostructures with dramatically released lattice matching conditions. This study demonstrates interface‐driven stacking boundaries in WS2 using epitaxially grown tungsten disulfide (WS2) on wrinkled graphene. Graphene wrinkles function as highly reactive nucleation sites on WS2 epilayers; however, they impede lateral growth and induce additional stress in the epilayer due to anisotropic friction. Moreover, partial dislocation‐driven in‐plane strain facilitates out‐of‐plane buckling with a height of 1 nm to release in‐plane strain. Remarkably, in‐plane strain relaxation at partial dislocations restores the bandgap to that of monolayer WS2 due to reduced interlayer interaction. These findings clarify significant substrate morphology effects even in vdW epitaxy and are potentially useful for various applications involving modifying optical and electronic properties by manipulating extended 1D defects via substrate morphology control.  相似文献   

11.
Van der Waals materials and their heterostructures provide a versatile platform to explore new device architectures and functionalities beyond conventional semiconductors. Of particular interest is anti‐ambipolar behavior, which holds potentials for various digital electronic applications. However, most of the previously conducted studies are focused on hetero‐ or homo‐ p–n junctions, which suffer from a weak electrical modulation. Here, the anti‐ambipolar transport behavior and negative transconductance of MoTe2 transistors are reported using a graphene/h‐BN floating‐gate structure to dynamically modulate the conduction polarity. Due to the asymmetric electrical field regulating effect on the recombination and diffusion currents, the anti‐ambipolar transport and negative transconductance feature can be systematically controlled. Consequently, the device shows an unprecedented peak resistance modulation factor (≈5 × 103), and effective photoexcitation modulation with distinct threshold voltage shift and large photo on/off ratio (≈104). Utilizing this large modulation effect, the voltage‐transfer characteristics of an inverter circuit variant are further studied and its applications in Schmitt triggers and multivalue output are further explored. These properties, in addition to their proven nonvolatile storage, suggest that such 2D heterostructured devices display promising perspectives toward future logic applications.  相似文献   

12.
2D transition metal dichalcogenide (TMD) layered materials are promising for future electronic and optoelectronic applications. The realization of large‐area electronics and circuits strongly relies on wafer‐scale, selective growth of quality 2D TMDs. Here, a scalable method, namely, metal‐guided selective growth (MGSG), is reported. The success of control over the transition‐metal‐precursor vapor pressure, the first concurrent growth of two dissimilar monolayer TMDs, is demonstrated in conjunction with lateral or vertical TMD heterojunctions at precisely desired locations over the entire wafer in a single chemical vapor deposition (VCD) process. Owing to the location selectivity, MGSG allows the growth of p‐ and n‐type TMDs with spatial homogeneity and uniform electrical performance for circuit applications. As a demonstration, the first bottom‐up complementary metal‐oxide‐semiconductor inverter based on p‐type WSe2 and n‐type MoSe2 is achieved, which exhibits a high and reproducible voltage gain of 23 with little dependence on position.  相似文献   

13.
Band‐like transport behavior of H‐doped transition metal dichalcogenide (TMD) channels in field effect transistors (FET) is studied by conducting low‐temperature electrical measurements, where MoTe2, WSe2, and MoS2 are chosen for channels. Doped with H atoms through atomic layer deposition, those channels show strong n‐type conduction and their mobility increases without losing on‐state current as the measurement temperature decreases. In contrast, the mobility of unintentionally (naturally) doped TMD FETs always drops at low temperatures whether they are p‐ or n‐type. Density functional theory calculations show that H‐doped MoTe2, WSe2, and MoS2 have Fermi levels above conduction band edge. It is thus concluded that the charge transport behavior in H‐doped TMD channels is metallic showing band‐like transport rather than thermal hopping. These results indicate that H‐doped TMD FETs are practically useful even at low‐temperature ranges.  相似文献   

14.
Two–dimensional layered materials (2DLMs) have attracted considerable recent interest as a new material platform for fundamental materials science and potential new technologies. Here we report the growth of layered metal halide materials and their optoelectronic properties. BiI3 nanoplates can be readily grown on SiO2/Si substrates with a hexagonal geometry, with a thickness in the range of 10–120 nm and a lateral dimension of 3–10 µm. Transmission electron microscopy and electron diffraction studies demonstrate that the individual nanoplates are high quality single crystals. Micro‐Raman studies show characteristic A g band at ≈115 cm?1 with slight red‐shift with decreasing thickness, and micro‐photoluminescence studies show uniform emission around 690 nm with blue‐shift with decreasing thickness. Electrical transport studies of individual nanoplates show n‐type semiconductor characteristics with clear photoresponse. Further, the BiI3 can be readily grown on other 2DLMs (e.g., WSe2) to form van der Waals heterostructures. Electrical transport measurements of BiI3/WSe2 vertical heterojunctions demonstrate p–n diode characteristics with gate‐tunable rectification behavior and distinct photovoltaic effect. The synthesis of the BiI3 nanoplates can expand the library of 2DLMs and enable a wider range of van der Waals heterostructures.  相似文献   

15.
Functional van der Waals heterojunctions of transition metal dichalcogenides are emerging as a potential candidate for the basis of next‐generation logic devices and optoelectronics. However, the complexity of synthesis processes so far has delayed the successful integration of the heterostructure device array within a large scale, which is necessary for practical applications. Here, a direct synthesis method is introduced to fabricate an array of self‐assembled WSe2/MoS2 heterostructures through facile solution‐based directional precipitation. By manipulating the internal convection flow (i.e., Marangoni flow) of the solution, the WSe2 wires are selectively stacked over the MoS2 wires at a specific angle, which enables the formation of parallel‐ and cross‐aligned heterostructures. The realized WSe2/MoS2‐based p–n heterojunction shows not only high rectification (ideality factor: 1.18) but also promising optoelectrical properties with a high responsivity of 5.39 A W?1 and response speed of 16 µs. As a feasible application, a WSe2/MoS2‐based photodiode array (10 × 10) is demonstrated, which proves that the photosensing system can detect the position and intensity of an external light source. The solution‐based growth of hierarchical structures with various alignments could offer a method for the further development of large‐area electronic and optoelectronic applications.  相似文献   

16.
Ambipolar organic field‐effect transistors (OFETs) are vital for the construction of high‐performance all‐organic digital circuits. The bilayer p–n junction structure, which is composed of separate layers of p‐ and n‐type organic semiconductors, is considered a promising way to realize well‐balanced ambipolar charge transport. However, this approach suffers from severely reduced mobility due to the rough interface between the polycrystalline thin films of p‐ and n‐type organic semiconductors. Herein, 2D molecular crystal (2DMC) bilayer p–n junctions are proposed to construct high‐performance and well‐balanced ambipolar OFETs. The molecular‐scale thickness of the 2DMC ensures high injection efficiency and the atomically flat surface of the 2DMC leads to high‐quality p‐ and n‐layer interfaces. Moreover, by controlling the layer numbers of the p‐ and n‐type 2DMCs, the electron and hole mobilities are tuned and well‐balanced ambipolar transport is accomplished. The hole and electron mobilities reach up to 0.87 and 0.82 cm2 V?1 s?1, respectively, which are the highest values among organic single‐crystalline double‐channel OFETs measured in ambient air. This work provides a general route to construct high‐performance and well‐balanced ambipolar OFETs based on available unipolar materials.  相似文献   

17.
The metallic 1T phase of WS2 (1T‐WS2), which boosts the charge transfer between the electron source and active edge sites, can be used as an efficient electrocatalyst for the hydrogen evolution reaction (HER). As the semiconductor 2H phase of WS2 (2H‐WS2) is inherently stable, methods for synthesizing 1T‐WS2 are limited and complicated. Herein, a uniform wafer‐scale 1T‐WS2 film is prepared using a plasma‐enhanced chemical vapor deposition (PE‐CVD) system. The growth temperature is maintained at 150 °C enabling the direct synthesis of 1T‐WS2 films on both rigid dielectric and flexible polymer substrates. Both the crystallinity and number of layers of the as‐grown 1T‐WS2 are verified by various spectroscopic and microscopic analyses. A distorted 1T structure with a 2a0 × a0 superlattice is observed using scanning transmission electron microscopy. An electrochemical analysis of the 1T‐WS2 film demonstrates its similar catalytic activity and high durability as compared to those of previously reported untreated and planar 1T‐WS2 films synthesized with CVD and hydrothermal methods. The 1T‐WS2 does not transform to stable 2H‐WS2, even after a 700 h exposure to harsh catalytic conditions and 1000 cycles of HERs. This synthetic strategy can provide a facile method to synthesize uniform 1T‐phase 2D materials for electrocatalysis applications.  相似文献   

18.
Chemical vapor deposition and growth dynamics of highly anisotropic 2D lateral heterojunctions between pseudo‐1D ReS2 and isotropic WS2 monolayers are reported for the first time. Constituent ReS2 and WS2 layers have vastly different atomic structure, crystallizing in anisotropic 1T′ and isotropic 2H phases, respectively. Through high‐resolution scanning transmission electron microscopy, electron energy loss spectroscopy, and angle‐resolved Raman spectroscopy, this study is able to provide the very first atomic look at intimate interfaces between these dissimilar 2D materials. Surprisingly, the results reveal that ReS2 lateral heterojunctions to WS2 produce well‐oriented (highly anisotropic) Re‐chains perpendicular to WS2 edges. When vertically stacked, Re‐chains orient themselves along the WS2 zigzag direction, and consequently, Re‐chains exhibit six‐fold rotation, resulting in loss of macroscopic scale anisotropy. The degree of anisotropy of ReS2 on WS2 largely depends on the domain size, and decreases for increasing domain size due to randomization of Re‐chains and formation of ReS2 subdomains. Present work establishes the growth dynamics of atomic junctions between novel anisotropic/isotropic 2D materials, and overall results mark the very first demonstration of control over anisotropy direction, which is a significant leap forward for large‐scale nanomanufacturing of anisotropic systems.  相似文献   

19.
Metal–semiconductor interfaces, known as Schottky junctions, have long been hindered by defects and impurities. Such imperfections dominate the electrical characteristics of the junction by pinning the metal Fermi energy. Here, a graphene–WSe2 p‐type Schottky junction, which exhibits a lack of Fermi level pinning, is studied. The Schottky junction displays near‐ideal diode characteristics with large gate tunability and small leakage currents. Using a gate electrostatically coupled to the WSe2 channel to tune the Schottky barrier height, the Schottky–Mott limit is probed in a single device. As a special manifestation of the tunable Schottky barrier, a diode with a dynamically controlled ideality factor is demonstrated.  相似文献   

20.
van der Waals (vdW) heterostructures based on atomically thin 2D materials have led to a new era in next‐generation optoelectronics due to their tailored energy band alignments and ultrathin morphological features, especially in photodetectors. However, these photodetectors often show an inevitable compromise between photodetectivity and photoresponsivity with one high and the other low. Herein, a highly sensitive WSe2/SnS2 photodiode is constructed on BN thin film by exfoliating each material and manually stacking them. The WSe2/SnS2 vdW heterostructure shows ultralow dark currents resulting from the depletion region at the junction and high direct tunneling current when illuminated, which is confirmed by the energy band structures and electrical characteristics fitted with direct tunneling. Thus, the distinctive WSe2/SnS2 vdW heterostructure exhibits both ultrahigh photodetectivity of 1.29 × 1013 Jones (Iph/Idark ratio of ≈106) and photoresponsivity of 244 A W?1 at a reverse bias under the illumination of 550 nm light (3.77 mW cm?2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号