首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five octasaccharides derived from the protein carbohydrate linkage region of chondroitin sulphate (CS) have been isolated from the large aggregating proteoglycan (aggrecan) extracted from the bovine articular cartilage of 6-year-old to 8-year-old animals. Following the purification of aggrecan the attached CS chains were digested with CS ABC endolyase and subsequently released from the protein core by beta-elimination. The individual oligosaccharides were purified by strong anion-exchange chromatography and their structures determined by very high-field one-dimensional and two-dimensional 1H-NMR spectroscopy. They were found to be octasaccharides, comprised of tetrasaccharide repeat-region extensions to the core tetrasaccharide linkage region structure. They have the following structures: deltaUA(beta1-3)GalNAc(beta1-4)GlcA(beta1-3)GalNAc(beta1-4)+ ++GlcA(beta1-3)Gal(beta1-3)Gal(beta1-4)Xyl-ol, deltaUA(beta1-3)GalNAc(beta1-4)GlcA(beta1-3)GalNAc6S(b eta1-4)GlcA(beta1-3)Gal(beta1-3)Gal(beta1-4)Xyl-ol, deltaUA(beta1-3)GalNAc6S(beta1-4)GlcA(beta1-3)GalNAc(b eta1-4)GlcA(beta1-3)Gal(beta1-3)Gal(beta1-4)Xyl-ol, deltaUA(beta1-3)GalNAc6S(beta1-4)GlcA(beta1-3)GalNA c6S(beta1-4)GlcA(beta1-3)Gal(beta1-3)Gal(beta1-4)Xyl-ol and deltaUA(beta1-3)GalNAc4S(beta1-4)GlcA(beta1-3)GalNA c6S(beta1-4)GlcA(beta1-3)Gal(beta1-3)Gal(beta1-4)Xyl-ol. They differ only in the nature of the sulphation of the GalNAc residues of the tetrasaccharide-repeat-region extension, which forms the first two disaccharides of the repeat region. No sulphation of any of the uronic acid residues has been identified and in one oligosaccharide neither of the GalNAc residues were sulphated. The majority of the linkage regions contained GalNAc residues which were fully 6-sulphated. However, in a significant amount, only one of the residues was 6-sulphated while the other was either unsulphated or 4-sulphated. There was no evidence either for sulphation of the linkage region galactose residues or for phosphorylation of the xylose residue, through which the chain is attached to the core protein.  相似文献   

2.
Chondroitin 4-sulfotransferase, which transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate to position 4 of N-acetylgalactosamine in chondroitin, was purified 1900-fold to apparent homogeneity with 6.1% yield from the serum-free culture medium of rat chondrosarcoma cells by affinity chromatography on heparin-Sepharose CL-6B, Matrex gel red A-agarose, 3',5'-ADP-agarose, and the second heparin-Sepharose CL-6B. SDS-polyacrylamide gel electrophoresis of the purified enzyme showed two protein bands. Molecular masses of these protein were 60 and 64 kDa under reducing conditions and 50 and 54 kDa under nonreducing conditions. Both the protein bands coeluted with chondroitin 4-sulfotransferase activity from Toyopearl HW-55 around the position of 50 kDa, indicating that the active form of chondroitin 4-sulfotransferase is a monomer. Dithiothreitol activated the purified chondroitin 4-sulfotransferase. The purified enzyme transferred sulfate to chondroitin and desulfated dermatan sulfate. Chondroitin sulfate A and chondroitin sulfate C were poor acceptors. Chondroitin sulfate E from squid cartilage, dermatan sulfate, heparan sulfate, and completely desulfated N-resulfated heparin hardly served as acceptors of the sulfotransferase. The transfer of sulfate to the desulfated dermatan sulfate occurred preferentially at position 4 of the N-acetylgalactosamine residues flanked with glucuronic acid residues on both reducing and nonreducing sides.  相似文献   

3.
Phospholipids are the major constituents of cell membranes, and have numerous structural and functional roles in the nervous system. Although the metabolic pathways responsible for the syntheses of the phosphatides phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn), and phosphatidylserine (PtdSer) are well understood, the mechanisms controlling these pathways in neural tissue have not been fully characterized. Recent studies have suggested that the main factors controlling PtdCho and PtdEtn synthesis by the Kennedy cycle tend to be the intracellular levels of key substrates for the biosynthetic enzymes, or changes in the activities of the rate-limiting enzymes. Moreover, different control mechanisms may operate, depending upon the functional state of the tissue.  相似文献   

4.
Adherence of parasite-infected erythrocytes (IEs) to the microvascular endothelium of various organs, a process known as sequestration, is a feature of Plasmodium falciparum malaria. This event is mediated by specific adhesive interactions between parasite proteins, expressed on the surface of IEs, and host molecules. P. falciparum IEs can bind to purified chondroitin sulfate A (CS-A), to the proteoglycan thrombomodulin through CS-A side chains, and to CS-A present on the surface of brain and lung endothelial cells and placental syncytiotrophoblasts. In order to identify structural characteristics of CS-A important for binding, oligosaccharide fragments ranging in size from 2 to 20 monosaccharide units were isolated from CS-A and CS-C, following controlled chondroitin lyase digestion, and used as competitive inhibitors of IE binding to immobilized ligands. Inhibition of binding to CS-A was highly dependent on molecular size: a CS-A tetradecasaccharide fraction was the minimum length able to almost completely inhibit binding. The effect was dose dependent and similar to that of the parent polysaccharide, and the same degree of inhibition was not found with the CS-C oligosaccharides. There was no effect on binding of IEs to other ligands, e.g., CD36 and intercellular adhesion molecule 1. Hexadeca- and octadecasaccharide fractions of CS-A were required for maximum inhibition of binding to thrombomodulin. Analyses of oligosaccharide fractions and polysaccharides by electrospray mass spectrometry and high-performance liquid chromatography suggest that the differences between the activities of CS-A and CS-C oligosaccharides can be attributed to differences in sulfate content and sulfation pattern and that iduronic acid is not involved in IE binding.  相似文献   

5.
1. Particulate fractions of costal cartilage from young rats are capable of catalyzing the formation of the first two monosaccharide units of the chondroitin sulfate-protein linkage region. 2. Hormonal imbalance has been shown to influence the activity of the glycosyltransferases responsible for the sequential transfer of xylose and galactose from UDPxylose and UDPgalactose, respectively, in the formation of the linkage region. 3. The activity of xylosyltransferase was found to be decreased in costal cartilage of diabetic, thyroidectomized and hypophysectomized rats, but not in rats injected with either testosterone or hydrocortisone. In the latter two treatment groups, galactosyltransferase activity was decreased only in the group receiving hydrocortisone. 4. The combined results of this and previous studies suggest that decreased levels of chondroitin sulfate in diabetic, thyroidectomized and hypophysectomized animals are due to interference in the synthesis of the linkage region of the proteoglycan at the xylosyltransferase level whereas hydrocortisone acts primarily at the level of the galactosyltransferase.  相似文献   

6.
The movement of neural crest cells is controlled in part by extracellular matrix. Aggrecan, the chondroitin sulfate proteoglycan from adult cartilage, curtails the ability of neural crest cells to adhere, spread, and move across otherwise favorable matrix substrates in vitro. Our aim was to isolate, characterize, and compare the structure and effect on neural crest cells of aggrecan and proteoglycans purified from the tissues through which neural crest cells migrate. We metabolically radiolabeled proteoglycans in E2.5 quail embryos and isolated and characterized proteoglycans from E3.3 quail trunk and limb bud. The major labeled proteoglycan was highly negatively charged, similar in hydrodynamic size to chick limb bud versican/PG-M, smaller than adult cartilage aggrecan but larger than reported for embryonic sternal cartilage aggrecan. The molecular weight of the iodinated core protein was about 400 kDa, which is more than reported for aggrecan but less than that of chick versican/PG-M. The proteoglycan bore chondroitin sulfate glycosaminoglycan chains of 45 kDa, which is larger than those of aggrecan. It lacked dermatan sulfate, heparan sulfate, or keratan sulfate chains. It bound to collagen type I, like aggrecan, but not to fibronectin (unlike versican/PG-M), collagen type IV, or laminin-1 in solid-phase assays and it bound to hyaluronate in gel-shift assays. When added at concentrations between 10 and 30 microg/ml to substrates of fibronectin, trunk proteoglycan inhibited neural crest cell spreading and migration. Attenuation of cell spreading was shown to be the most sensitive and titratable measure of the effect on neural crest cells. This effect was sensitive to digestion with chondroitinase ABC. Similar cell behavior was also produced by aggrecan and the small dermatan sulfate proteoglycan decorin; however, 30-fold more aggrecan was required to produce an effect of similar magnitude. When added in solution to neural crest cells which were already spread and migrating on fibronectin, the embryonic proteoglycan rapidly and reversibly caused complete rounding of the cells, being at least 30-fold more potent than aggrecan in this activity.  相似文献   

7.
In previous studies, chondroitin sulfate proteoglycans have been localized to the periphery of the zonular fibers and the individual zonular fibrils (or microfibrils) after Cuprolinic blue staining in conjunction with chondroitinase digestions and immunogold labelling with 2-B-6 antibody. In the present study, we wished to determine if these proteoglycans are linked to hyaluronan to form a large multimolecular aggregate. To accomplish this, we localized the hyaluronan using a biotinylated hyaluronan-binding protein fragment of chondroitin sulfate proteoglycan, containing also the link protein, purified from bovine nasal cartilage. The results showed that the ciliary zonule of the rat eye was reactive with the biotinylated hyaluronan-binding probe as demonstrated by streptavidin-peroxidase-diaminobenzidine staining and streptavidin-gold labelling. Hyaluronan-gold labelling showed that the gold particles were mostly localized on the periphery of the zonular fibers, which was similar to the localization pattern of the zonule associated-proteoglycans. This hyaluronan-binding probe also strongly labelled the sites of zonule insertion over the basement membrane of the inner ciliary epithelium at the pars plana and the lens capsule at the equatorial region, which suggests its probable role in the attachment of ciliary zonule to the basement membranes. To demonstrate whether these two molecules are linked to one another, ultrastructural colocalization of both hyaluronan and chondroitin sulfate proteoglycans was performed on the same sections by double-gold labelling, and combined Cuprolinic blue staining and hyaluronan-gold labelling. Gold particles of 15 and 10 nm in sizes labelling both hyaluronan and chondroitin 4-sulfate, were colocalized to the surface of the zonular fibers. The combined Cuprolinic blue staining and hyaluronan-gold labelling showed that the gold particles were localized towards the ends of the Cuprolinic blue-stained rodlets, which strongly suggests that these chondroitin sulfate proteoglycans are linked to the hyaluronan chain to form a large aggregate surrounding the periphery of the zonular fibers. These ciliary zonule-associated proteoglycan-hyaluronan aggregates may play a role in organizing the individual zonular fibrils (microfibrils) into bundles of zonular fibers.  相似文献   

8.
Cardiovascular and behavioural responses elicited by novel, noxious or aversive stimuli have been studied in dogs and cats. Hindlimb blood flow, heart rate and arterial blood pressure increased in dogs when an orienting response was elicited by a novel stimulus (a sound). Similar cardiovascular responses occurred in dogs to mild noxious stimulus and in cats displaying a threatening posture when confronted by a dog. The cardiovascular components of the orienting response to a sound habituated with repetition of the sound. In two dogs however sensitization (increase) of the response occurred with reped by repetition of the confrontations: the vasodilation in the muscles waned and eventually was replaced by vasoconstriction while the cardiac acceleration and pressor response persisted. The threatening response was the most persistent. The modification of the behavioural and cardiovascular aspect of the response was not developing in parallel. The cardiovascular pattern was altered before any apparent changes of the behavioural pattern occurred. The cardiovascular responses of the noxious stimulus in dogs and cardiovascular components of the defence reaction in cats were readily conditioned to a sound. The possible role of the modification of the cardiovascular pattern in defence reactions in pathogenesis of hypertension is discussed.  相似文献   

9.
Preincubation of HL60 cells and HUVEC cells with urinary trypsin inhibitor (UTI) inhibited increase of cytosolic free Ca2+ induced by LPS. In contrast, an increase of cytosolic free Ca2+ induced by LPS was not inhibited by deglycosylated UTI, UTI treated with monoclonal antibody of chondroitin sulfate. 45Ca2+ binding showed that UTI binds 45Ca2+ dose-dependently. Scatchard plot analysis showed that UTI has two binding sites for Ca2+, a high affinity binding site (Kd=15 microM) and a low affinity site (Kd=150 microM), and that UTI has more than 70 Ca2+ binding sites per molecule. The Ca2+ binding capacity of deglycosylated UTI and UTI treated with monoclonal antibody of chondroitin sulfate was markedly depressed. Furthermore, UTI forms multi-polymers in the presence of Ca2+ as demonstrated by gel filtration and agarose gel electrophoresis. These results suggest that UTI is a physiological Ca2+ chelator on the cells and that the action is due to chondroitin sulfate chains of UTI.  相似文献   

10.
BACKGROUND: This study was designed to test the hypothesis that the hospital resources utilized in treating pedestrian trauma would be significantly greater than that for automobile occupants. This was based on previous studies that showed that the demographic features and patterns of injury sustained by the pedestrian population were significantly different from that of automobile occupants. METHODS: A hospital-based study was designed utilizing retrospective analysis of a prospective trauma database. All primary retrievals of pedestrians (n=547) and automobile occupants (n=597) involved in accidents in Central Sydney from mid-1990 to mid-1995 were included. The length of hospital stay, use of the intensive care unit (ICU) and visits to the operating theatre (Standard Resource Cost) were compared. RESULTS: The age and injury severity scores were significantly higher for the pedestrian group. The length of stay (days) for the pedestrians (mean, 12 SD 14; median, 7 interquartile range (IQR) 13), was significantly higher (P < 0.0001 ) than that for the automobile occupants (mean, 7 SD 11; median, 2 IQR 6). The ICU utilization (days) for the pedestrians (mean, 1.3 SD 4.0; median, 0) was significantly higher (P < 0.0001) than that of the automobile occupants (mean, 0.6 SD 2.9; median, 0). The average operating theatre utilization per pedestrian (0.65 visits) exceeded that of automobile occupants (0.43) by 50% (P < 0.0001). CONCLUSIONS: The study confirms that the acute care of pedestrian injury utilizes more hospital resources than that of automobile occupants. Resources should be allocated to meet this need both in terms of hospital reimbursement and overall directives in public health policy.  相似文献   

11.
Fibromodulin has been isolated from bovine and equine articular cartilage and the attached keratan sulphate chains subjected to digestion by keratanase II. The oligosaccharides generated have been reduced and subsequently isolated by strong anion-exchange chromatography. Their structures have been determined by high-field 1H-NMR spectroscopy and high-pH anion-exchange chromatography. Both alpha(2-6)- and alpha(2-3)-linked N-acetylneuraminic acid have been found in the capping oligosaccharides, and, fucose which is alpha(1-3)-linked to N-acetylglucosamine has been found as a branch in both repeat region and capping oligosaccharides. These data demonstrate that there are fundamental differences between the structures present in the N-linked keratan sulphate chains attached to fibromodulin from articular cartilage and those from tracheal cartilage, which lack both alpha(2-6)-linked N-acetylneuraminic acid and alpha(1-3)-linked fucose. It has been confirmed that the keratan sulphate chains are short, being only eight or nine disaccharides in length. Very significant differences in the levels of galactose sulphation have been identified at the non-reducing end of the chain. The galactose residue adjacent to the non-reducing cap is sulphated in only 1-3% of chains, compared with a sulphation level of over 40% closer to the reducing end. This highlights the difference between the chain termini and the repeat region in terms of structure and points to the potential for functional importance. The repeat region and capping fragments of the N-linked keratan sulphates from bovine and equine articular cartilage fibromodulin have been found to have the following general structure: NeuAc-(alpha 2-3/6)Gal[6SO3-](beta 1-4)GlcNAc6SO3-(beta 1-3)Gal[6SO3-] (beta 1-4)?[Fuc(alpha 1-3)]0-1GlcNAc6SO3-(beta 1-3)Gal-[6SO3-](beta 1-4)? 6-7GlcNAc6SO3-.  相似文献   

12.
Mechanical forces are important modulators of cellular function in many tissues and are particularly important in the cardiovascular system. The endothelium, by virtue of its unique location in the vessel wall, responds rapidly and sensitively to the mechanical conditions created by blood flow and the cardiac cycle. In this study, we examine data which suggest that steady laminar shear stress stimulates cellular responses that are essential for endothelial cell function and are atheroprotective. We explore the ability of shear stress to modulate atherogenesis via its effects on endothelial-mediated alterations in coagulation, leukocyte and monocyte migration, smooth muscle growth, lipoprotein uptake and metabolism, and endothelial cell survival. We also propose a model of signal transduction for the endothelial cell response to shear stress including possible mechanotransducers (integrins, caveolae, ion channels, and G proteins), intermediate signaling molecules (c-Src, ras, Raf, protein kinase C) and the mitogen activated protein kinases (ERK1/2, JNK, p38, BMK-1), and effector molecules (nitric oxide). The endothelial cell response to shear stress may also provide a mechanism by which risk factors such as hypertension, diabetes, hypercholesterolemia, and sedentary lifestyle act to promote atherosclerosis.  相似文献   

13.
Biological characteristics of eleven phages for Streptococcus bovis were investigated; seven phage were isolated from ovine rumen and four were virulent mutants of temperate phages of lysogenic cultures. The phages had many properties in common: similar morphology of negative colonies, the identical spectrum of lytic action, related antigens, absolute or high requirement of calcium ions, thermolability, and inactivation by the content of the rumen. Their susceptibility to the inactivating action of acetic acid, urea and temperature was however different. Chloroform and phenol may be used during purification and conservation of the phages.  相似文献   

14.
Electrophysiological properties of neurofilament-positive neurones in dissociated cell cultures were prepared at postnatal days 4-5 from rat dentate gyrus and studied using the whole-cell patch-clamp technique. These cells expressed a fast-inactivating, 0.5 microM tetrodotoxin-sensitive Na+ current; a high-voltage-activated (HVA) Ca2+ current, which was 30 microM Cd(2+)- and partially 2 microM nicardipine-sensitive; and an inward rectifier current, which was sensitive to extracellularly applied 1 mM Cs+. The outward current pattern was composed of a delayed rectifier-like outward current sensitive to 20 mM tetraethylammonium (TEA) and a fast-inactivating, Ca(2+)-dependent outward current. This transient Ca(2+)-dependent K+ outward current was identified by a subtraction procedure. K+ currents recorded under conditions of blocked Ca2+ currents (after rundown of the HVA Ca2+ current or blocked by extracellularly applied Cd2+) were subtracted from control currents. By comparison with the current pattern of identified dentate granule cells, it is concluded that the investigated cell type originated from interneurones or projection neurones of the dentate hilus.  相似文献   

15.
Immunocytochemical staining was used to identify nerve and glial cells from postnatal rat cerebelli in situ and following tissue dissociation. Purkinje cells were identified using antibodies for the calcium-binding proteins calbindin and PEP19. Purkinje cells isolated during the second postnatal week were 15-20 microns in diameter and relatively abundant and displayed thin perisomatic processes. These features were used to identify Purkinje cells with scanning electron microscopy, which revealed extensive membrane infoldings. Golgi and nuclear cells were identified using antibodies against rat-303 antigen. Pale, nuclear, and Purkinje cells were identified using antibodies for rat-302 antigen. Although staining for rat-302 and rat-303 was weak during the second postnatal week, we were able to identify Golgi and pale cells even after tissue dissociation. Isolated Golgi cells were 8-10 microns in diameter and fewer in number than Purkinje cells and did not counterstain with calbindin antibodies. Isolated pale cells were 8-10 microns in diameter, rare, and resistant to calbindin antibodies. Isolated neurons from cerebellar nuclei were not located with either 302 or 303 staining, suggesting that they remained in the tissue. Golgi-Bergmann cells and astrocytes were identified using antibodies for glial fibrillary acidic protein. Isolated glial cells were 12-15 microns in diameter, more numerous than Purkinje cells, and unstained with calbindin antibodies. With phase-contrast optics, glial cells appeared flatter than neuronal cell types and had acentric nuclei. These results demonstrate that specific cell types in developing rat cerebellum can be identified after acute isolation, which should facilitate analysis of their endogenous properties.  相似文献   

16.
17.
Noncytotoxic CD8+ T cells may play a critical role in preventing progression to disease following human immunodeficiency virus (HIV) infection. This antiviral response, mediated by a novel CD8+ T-cell antiviral factor (CAF), occurs soon after infection and is maintained in asymptomatic individuals. Here, Jay Levy and colleagues propose that this antiviral activity represents a natural cellular immune reaction that controls HIV production and protects the host from potential harmful effects of cytotoxic T lymphocytes.  相似文献   

18.
19.
20.
The effects of histamine were studied in atria obtained from untreated and reserpine-pretreated rats. At high doses, histamine caused a positive chronotropic response that was not antagonized by either promethazine or cimetidine. In the presence of propranolol or in atria from reserpine-pretreated rats histamine caused an atropine-sensitive negative chronotropic response. Large doses of histamine also caused a positive inotropic response in left atria that were antagonized by the beta adrenoceptor antagonist propranolol. Reserpine pretreatment abolished the inotropic response of histamine in the rat heart. The results indicate that in large doses histamine causes an indirect stimulation of beta adrenoceptors (right and left atrium) by releasing endogenous noradrenaline and of muscarinic receptors (right atrium) by releasing acetylcholine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号