首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nitrogen absorption by iron, Fe-20Cr-10Ni alloy, and SUS329J1 duplex stainless steel during CO2 laser welding in an Ar-N2 gas mixture was investigated and compared with equilibrium data predicted on Sieverts’ law and data on absorption during arc and YAG laser welding. The nitrogen absorption during CO2 laser welding is lower than that during arc welding, but higher than that during YAG laser welding. Compared with arc welding, the lesser contact of monatomic nitrogen with the weld pool surface and the higher partial pressure of metal vapor in the keyhole may result in the lower nitrogen absorption during CO2 laser welding, while the very low density of monatomic nitrogen in the atmosphere during YAG laser welding due to the low-temperature plume may lead to the lower nitrogen absorption during YAG laser welding than during CO2 laser welding.  相似文献   

2.
The existence of monatomic nitrogen in the plasma just over the keyhole during CO2 laser welding was confirmed by the monochromatic image of a specific spectrum line emitted by monatomic nitrogen. The smaller reaction area of the molten pool with monatomic nitrogen is considered to lead to less nitrogen absorption during CO2 laser welding than that during arc welding. The effect of the penetration mode shows that the nitrogen absorption during CO2 laser welding mainly occurs on the upper surface of the molten pool. The nitrogen content in a reduced-pressure nitrogen atmosphere during CO2 laser welding is in good agreement with that obtained during yttrium aluminum garnet (YAG) laser welding within the range of low nitrogen (partial) pressures. This result supports the supposition that the different behaviors of nitrogen absorption between CO2 laser welding and YAG laser welding can be reasonably attributed to the lesser amount of monatomic nitrogen during YAG laser welding.  相似文献   

3.
Small CO2 additions of 0.092 to 10 vol pct to the Ar shielding gas dramatically change the weld shape and penetration from a shallow flat-bottomed shape, to a deep cylindrical shape, to a shallow concave-bottomed shape, and back to the shallow flat-bottomed shape again with increasing CO2 additions in gas thermal arc (GTA) welding of a SUS304 plate. Oxygen from the decomposition of CO2 transfers and becomes an active solute element in the weld pool and reverses the Marangoni convection mode. An inward Marangoni convection in the weld pool occurs when the oxygen content in the weld pool is over 80 ppm. Lower than 80 ppm, flow will change to the outward direction. An oxide layer forms on the weld pool in the welding process. The heavy oxide layer on the liquid-pool surface will inhibit the inward fluid flow under it and also affects the oxygen transfer to the liquid pool. A model is proposed to illustrate the interaction between the CO2 gas and the molten pool in the welding process.  相似文献   

4.
Laser welding of AISI 410 martensitic stainless steel was attempted in a diffusion cooled RF excited CO2 slab laser under Gaussian mode with argon and nitrogen as shielding gas. The effect of shielding gas and energy density on the resultant weld bead geometry, microstructure and hardness were assessed and discussed. It has been observed that welds obtained under nitrogen shielding conditions had higher and uniform hardness across the weld metal on account of reduced ferrite content.  相似文献   

5.
Ultra‐fine grained ferrite steels have higher strength and better toughness than the normal ferrite steels because of their micrometer or sub‐micrometer sized grains. In this paper the ultra‐fine grained steel SS400 is welded by CO2 laser. The shape of weld, cooling rate of HAZ, width of HAZ, microstructures and mechanical properties of the joint are discussed. Experimental results indicate that laser beam welding can produce weld with a large ratio of depth to width. The cooling rate of HAZ of laser beam welding is fast, the growth of prior austenite grains of HAZ is limited, and the width of weld and HAZ is narrow. The microstructures of weld metal and coarse‐grained HAZ of laser beam welding mainly consist of BL + M (small amount). With proper laser power and welding speed, good comprehensive mechanical properties can be acquired. The toughness of weld metal and coarse‐grained HAZ are higher than that of base metal. There is no softened zone after laser beam welding. The tensile strength of a welded joint is higher than that of base metal. The welded joint has good bending ductility.  相似文献   

6.
7.
The microstructural stability at temperatures above 700 °C of weld metal of type 29Cr-8Ni-2Mo-0.39N and weld metal of type 25Cr-10Ni-4Mo-0.28N has been compared. Multipass welding was employed using the gas tungsten arc welding technique with a shielding gas of Ar+2 pct N2. The quantitative assessment of the intermetallic phase was performed using automatic image analysis in the light optical microscope (LOM). Detailed microanalysis was also performed using scanning and transmission electron microscopy. A computer program developed by the authors was used to calculate a continuous cooling-temperature (CCT) diagram on the basis of the experimentally determined time-temperature-transformation (TTT) diagram. Thermodynamic calculations for estimating phase stabilities and for interpreting experimental observations were performed. It was found that weld metal of type 29Cr-8Ni-2Mo-0.39N was microstructurally more stable than weld metal of type 25Cr-10Ni-4Mo-0.28N. A lower molybdenum concentration and a higher nitrogen concentration in the former alloy could explain the higher stability with respect to the intermetallic phase. The higher nitrogen concentration also provides a rationale for the higher stability against the formation of secondary austenite in weld metal of type 29Cr-8Ni-2Mo-0.39N. This effect, which is associated with a lower thermodynamic driving force for precipitation of secondary austenite during multipass welding, can be explained by nitrogen-enhanced primary austenite formation.  相似文献   

8.
The effects of using oxygenated assist gases on the weldability and weld properties of Nd:YAG, pulsed laser welds in copper (Cu) have been evaluated. It was found that the effective absorptivity of the Cu increased as the oxygen content of the Ar assist gas was increased. This facilitated laser welding of Cu at much lower laser powers and increased weld penetration. The use of oxygenated assist gas promoted nucleation and growth of submicroscopic oxide particles within the weld metal. These particles dispersion-strengthened the weld metal, thereby increasing both weld metal hardness and strength. However, when O2 concentrations in the assist gas were greater than 90 pct, weld metal embrittlement due to excessive volume fractions of oxides was observed. The use of oxygenated assist gas also led to excessive cold lapping and poor bead quality. The bead quality was improved, however, by ramping-down the laser power before terminating each pulse.  相似文献   

9.
The effect of compositional variation in TiO2-based flux-cored arc welding fluxes on viscosity, wettability, and electronegativity was studied. The thermo-physical properties of the retrieved fluxes and their relationship with the mechanical properties of the weld zone, including tensile strength and micro-Vickers hardness, after welding were identified. Microstructural observation under similar welding conditions revealed significant grain coarsening at a corrected optical basicity (Λcorr) of 0.62, resulting in reduced strength and hardness due to greater heat transfer. Welding fluxes containing TiO2-based simple structural units should result in greater heat transfer due to the deficiency in complex [AlO4]5?- and [SiO4]4?-based structural units, as identified through spectroscopic analyses using fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The electronegativity of the retrieved fluxes was also evaluated since higher electronegativity results in greater absorption of electrons in the arc, resulting in arc condensation towards the center direction. Consequently, deeper penetration could be obtained, where the highest electronegativity was identified to be approximately 0.62 of the corrected optical basicity. Thus, both the thermal conductivity and electronegativity of the welding fluxes were identified to determine the heat transfer phenomenon during flux-cored arc welding.  相似文献   

10.
CO2 laser beam welding of 6061-T6 aluminum alloy thin plate   总被引:1,自引:0,他引:1  
Laser beam welding is an attractive welding process for age-hardened aluminum alloys, because its low heat input minimizes the width of weld fusion and heat-affected zones (HAZs). In the present work, 1-mm-thick age-hardened Al-Mg-Si alloy, 6061-T6, plates were welded with full penetration using a 2.5-kW CO2 laser. Fractions of porosity in the fusion zones were less than 0.05 pct in bead-on-plate welding and less than 0.2 pct in butt welding with polishing the groove surface before welding. The width of a softened region in the-laser beam welds was less than 1/4 times that of a tungsten inert gas (TIG) weld. The softened region is caused by reversion of strengthening β″ (Mg2Si) precipitates due to weld heat input. The hardness values of the softened region in the laser beam welds were almost fully recovered to that of the base metal after an artificial aging treatment at 448 K for 28.8 ks without solution annealing, whereas those in the TIG weld were not recovered in a partly reverted region. Both the bead-on-plate weld and the butt weld after the postweld artificial aging treatment had almost equivalent tensile strengths to that of the base plate.  相似文献   

11.
Continuous CO2 laser welding of an Fe-Cu dissimilar couple in a butt-weld geometry at different process conditions is studied. The process conditions are varied to identify and characterize the microstructural features that are independent of the welding mode. The study presents a characterization of the microstructure and mechanical properties of the welds. Detailed microstructural analysis of the weld/base-metal interface shows features that are different on the two sides of the weld. The iron side can grow into the weld with a local change in length scale, whereas the interface on the copper side indicates a barrier to growth. The interface is jagged, and a banded microstructure consisting of iron-rich layers could be observed next to the weld/Cu interface. The observations suggest that solidification initiates inside the melt, where iron and copper are mixed due to convective flow. The transmission electron microscopy (TEM) of the weld region also indicates the occasional presence of droplets of iron and copper. The microstructural observations are rationalized using arguments drawn from a thermodynamic analysis of the Fe-Cu system.  相似文献   

12.
Three different superduplex stainless weld metals have been produced using manual metal arc welding under identical welding conditions. The concentration of the alloying elements tungsten and copper corresponded to the concentrations in commercial superduplex stainless steels (SDSS). Aging experiments in the temperature range 700 °C to 1110 °C showed that the formation of intermetallic phase was enhanced in tungsten-rich weld metal and also dissolved at higher temperatures compared with tungsten-poor and tungsten-free weld metals. It could be inferred from time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams produced in the present investigation that the critical cooling rate to avoid 1 wt pct of intermetallic phase was 2 times faster for tungsten-rich weld metal. Microanalysis in combination with thermodynamic calculations showed that tungsten was accommodated in χ phase, thereby decreasing the free energy. Experimental evidence supports the view that the formation of intermetallic phase is enhanced in tungsten-rich weld metal, owing to easier nucleation of nonequilibrium χ phase compared with σ phase. The formation of secondary austenite (γ2) during welding was modeled using the thermodynamic computer program Thermo-Calc. Satisfactory agreement between theory and practice was obtained. Thermo-Calc was capable of predicting observed lower concentrations of chromium and nitrogen in γ2 compared with primary austenite. The volume fraction of γ2 was found to be significantly higher in tungsten-rich and tungsten + copper containing weld metal. The results could be explained by a higher driving force for precipitation of γ2 in these.  相似文献   

13.
The objective of the present work is to investigate the tensile behavior on laser welded Al–Mg–Sc–Zr in situ nano TiB2 composite. Al–3.5Mg–0.15Sc–0.075Zr–1TiB2 composite was melted in a resistance heating furnace. TiB2 was formed during in situ reaction of K2TiF6 and KBF4 salt mixture at 750 °C for 60 min. Welding was done using Nd:YAG pulsed laser source JK 600 (GSI make) using a robotic (IRB1410 of ABB) laser set up. The autogenous welding experiments were carried out using some of the significant parameters such as frequency—75 Hz, laser beam energy—8.10 J, pulse width—2.5 ms and welding speed—5 mm/s. It was observed that laser beam power played a major role and lower value of energy with higher repetition rate resulted better and uniform weld bead with full penetration. Five different processing methods were utilized to investigate the mechanical and metallurgical properties namely: (a) as cast (AC), (b) as cast followed by welding (AC + W), (c) as cast followed by aging (AC + A), (d) as cast followed by aging and then welding (AC + A + W) and finally (e) as cast followed by welding and then aging (AC + W + A). The ageing treatment followed was heating the samples at 300 °C for 5 h followed by air cooling. The obtained results infered that apart from the obvious superior properties shown by as cast followed by aging treatment (AC + A: 248 MPa); the AC + W + A specimens showed better properties (235 MPa) along with AC + A + W specimens (226 MPa). The fracture surface analyses revealed the following: (a) the weld region in the laser welded as cast material did not show any TiB2 in the structure probably due to the fact that temperature experienced during laser welding process might have melted the particles and was dissolved in the solid solution, (b) the interface of the weld-base region showed the presence of few TiB2 particles which lost their hexagonal shape due to preferential melting along the edges. (c) The fracture morphology of both AC + A + W and AC + W + A specimen’s showed typical mixed mode fracture with fine precipitates along the interface. The strength increased in AC + W + A at the expense of ductility due to formation of Al3Sc precipitates.  相似文献   

14.
The prediction model has been developed for steel weld metal microstructural constituents as a function of flux ingredients such as CaO, MgO, CaF2 and Al2O3 in submerged arc welding carried out at fixed welding parameters. The results of quantitative measurements of micro‐structural constituents on eighteen weld metal samples were utilised for developing the prediction equations of microstructural constituents applying statistical design of experiment for mixtures. Among the flux ingredients, CaO appears to be most important as an individual as well as interaction with other ingredients viz. CaF2 and Al2O3 in influencing the amount of microstructural constituents in weld metal. The prediction equations have been checked for adequacy by performing tests on welding using randomly designed flux and found satisfactory. The iso‐response curves were developed for selected microstructural constituents to show their output levels at different percentage of flux ingredients.  相似文献   

15.
Steeliswidelyusedbecauseofitsgoodcompre hensive properties ,plentyofresourceandlowerprice .Thestrengthandtoughnessaretwoimpor tantpropertiesofsteels ,andpeoplemakeeffortstoincreasetheirvalues .Addingalloyingelementandcontrollingmicrostructurearetwobasicwaystoac complishtheaim .Therefinedmicrostructureob tainedbyprocessingtechniqueenablesthestrengthandtoughnessofsteeltobeincreasedwithoutaddingalloyingelementandtheratioofperformance costtobeincreased .Theultra finegrainedsteelshavefer ritegrains…  相似文献   

16.
In the research work, an attempt is made to join nickel-based alloy 825 by employing CO2 laser beam welding. Successful full penetration weld joint of a 5?mm thick plate is achieved with a very low heat input of 120?J-mm?1. Narrow weld bead width of 0.6?mm at the root and 1.6?mm at the cap is observed fusion zone; the interface and base metal microstructures have been examined using both optical and scanning electron microscopic techniques to understand the microstructural changes which have occurred due to laser welding. A range of tests of Vickers micro hardness, tensile and impact tests had been performed on the weldment to ascertain the mechanical properties of the joint. Tensile failure at the base metal and a 180° root bend test conducted on the weldment ascertain the soundness of the weld joint produced. An attempt is made to correlate the microstructure and mechanical properties of the weldment. Intermetallics TiN and Al4C3 observed in the SEM\EDS analysis at the fusion zone are found to have improved the weld metal strength and hardness.  相似文献   

17.
18.
A CO2 laser has been employed to join binary Ti50Ni50 and Ti49.5Ni50.5 shape-memory alloys (SMAs), with an emphasis on the shape-memory and corrosion characteristics. Experimental results showed that a slightly lowered martensite start (M S) temperature and no deterioration in shape-memory character of both alloys were found after laser welding. The welded Ti50Ni50, with an increased amount of B2 phase in the weld metal (WM), had higher strength and considerably lower elongation than the base metal (BM). Potentiodynamic tests revealed the satisfactory performance of laser-welded Ti50Ni50 in 1.5 M H2SO4 and 1.5 M HNO3 solutions. However, the WM exhibited a significantly higher corrosion rate and a less stable passivity than the BM in artificial saliva. On the other hand, the pseudoelastic behavior of the laser weld was investigated only for the Ti49.5Ni50.5 alloy, to facilitate tension cycling at room temperature. The cyclic deformation of Ti49.5Ni50.5 indicated that the stress required to form stress-induced martensite (σ m) and the permanent residual strain (ε p) were higher after welding at a given number of cycles (N), which were certainly related to the more inhomogeneous nature of the WM.  相似文献   

19.
To improve mechanical properties of S2355JR carbon steel, pre-synthesized ZrB2 nanocrystals were used to coat the metal surface by laser cladding using 2000 W CO2 laser. ZrB2 nanocrystals were synthesized by mechanochemical process. The effect of laser power on the coating layers was examined for optimizing the most effective coating conditions. Microstructural studies were carried out using optical microscope, scanning electron microscope and X-ray diffraction to analyze phase structures of the coated layers. Mechanical characteristics of the laser coated layers were evaluated by studying microhardness, wear and scratch resistance properties. Maximum hardness of the coated layers was observed while cladding with 75 and 125 W laser powers, when other processing parameters and conditions were kept at optimum levels. EDS analysis of these laser cladded layers indicated the formation of complex boro-nitrides, nitrides and carbides of Zr and Fe that contributed to vast increase in hardness of the laser-clad coating on S2355JR steel. Depending upon the laser powers used, the thickness of the coated layers was found to be in the range of 15–37 µm. The wear and micro-scratch tests results revealed significant improvement in wear properties.  相似文献   

20.
Laser butt welds were fabricated in a titanium alloy (Ti-6A1-4V, AMS 4911-Tal0 BSS, annealed) using a Control Laser 2 kW CW CO2 laser. The relationships between the weld microstructure and mechanical properties are described and compared to the theoretical thermal history of the weld zone as calculated from a three-dimensional heat transfer model of the process. The structure of the weld zone was examined by radiography to detect any gross porosity as well as by both optical and electron microscopy in order to identify the microstructure. The oxygen pick-up during gas shielded laser welding was analyzed to correlate further with the observed mechanical properties. It was found that optimally fabricated laser welds have a very good combination of weld microstructure and mechanical properties, ranking this process as one which can produce high quality welds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号