首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The second generation biofuel butanol can be produced by acetone‐butanol‐ethanol (ABE) fermentation, but the separation from the broth is still challenging. Therefore, dipotassium hydrogen phosphate was investigated as salting‐out agent. The ABE fermentation broth was enriched by a prefractionator after being preheated. The enriched ABE solution was salted out by K2HPO4 solutions at different temperatures. The water in the supplemented ABE solution was largely removed by the salting‐out method. The energy requirements for the prefractionator and the butanol column were significantly reduced. The total energy demand for the recovery of acetone, butanol, and ethanol by salting‐out and subsequent distillation was optimized. With the salting‐out process, the entire salting‐out and distillation method turned out to be more energy‐saving than the conventional one.  相似文献   

2.
BACKGROUND: To use butanol as a liquid fuel and feedstock, it is necessary to establish processes for refining low‐concentration butanol solutions. Pervaporation (PV) employing hydrophobic silicalite membranes for selective recovery of butanol is a promising approach. In this study, the adsorption behavior of components present in clostridia fermentation broths on membrane material (silicalite powder) was investigated. The potential of PV using silicone rubber‐coated silicalite membranes for the selective separation of butanol from model acetone–butanol–ethanol (ABE) solutions was investigated. RESULTS: The equilibrium adsorbed amounts of ABE per gram of silicalite from aqueous solutions of binary mixtures at 30 °C increased as follows: ethanol (95 mg) < acetone (100 mg) < n‐butanol (120 mg). The amount of butanol adsorbed is decreased by the adsorption of acetone and butyric acid. In the separation of ternary butanol/water/acetone mixtures, the enrichment factor for acetone decreased, compared with that in binary acetone/water mixtures. In the separation of a model acetone–butanol–ethanol (ABE) fermentation broth containing butyric acid by PV using a silicone rubber‐coated silicalite membrane, the permeate butanol concentration was comparable with that obtained in the separation of a model ABE broth without butyric acid. The total flux decreased with decreasing feed solution pH. CONCLUSION: A silicone rubber‐coated silicalite membrane exhibited highly selective PV performance in the separation of a model ABE solution. It is very important to demonstrate the effectiveness of PV in the separation of actual clostridia fermentation broths, and to identify the factors affecting PV performance. Copyright © 2011 Society of Chemical Industry  相似文献   

3.
The salting‐out phase equilibria for acetone, 1‐butanol, and ethanol (ABE) from dilute aqueous solutions using potassium carbonate (K2CO3) and dipotassium hydrogen phosphate trihydrate (K2HPO4?3H2O) as outstanding salting‐out agents were investigated. Increasing the salt concentration strengthened the salting‐out effects and improved the distribution coefficients of all three solvents (ABE) significantly. Temperature had a slight effect on the phase equilibria. The K2HPO4 solution (69 wt %) showed a stronger salting‐out effect than the K2CO3 solution (56 wt %) on recovering ABE from dilute aqueous solutions. Dilute aqueous solutions containing more solvents increased the recoveries of acetone and 1‐butanol, while the results showed a negligible effect on the solubility of ABE. The solubility of ABE was also correlated well with the molar number of salt per gram of water in the aqueous phase. A new equation demonstrated this satisfactorily. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3470–3478, 2015  相似文献   

4.
BACKGROUND: Butanol fermentation is product limiting owing to butanol toxicity to microbial cells. Butanol (boiling point: 118 °C) boils at a higher temperature than water (boiling point: 100 °C) and application of vacuum technology to integrated acetone–butanol–ethanol (ABE) fermentation and recovery may have been ignored because of direct comparison of boiling points of water and butanol. This research investigated simultaneous ABE fermentation using Clostridium beijerinckii 8052 and in situ butanol recovery by vacuum. To facilitate ABE mass transfer and recovery at fermentation temperature, batch fermentation was conducted in triplicate at 35 °C in a 14 L bioreactor connected in series with a condensation system and vacuum pump. RESULTS: Concentration of ABE in the recovered stream was greater than that in the fermentation broth (from 15.7 g L?1 up to 33 g L?1). Integration of the vacuum with the bioreactor resulted in enhanced ABE productivity by 100% and complete utilization of glucose as opposed to a significant amount of residual glucose in the control batch fermentation. CONCLUSION: This research demonstrated that vacuum fermentation technology can be used for in situ butanol recovery during ABE fermentation and that C. beijerinckii 8052 can tolerate vacuum conditions, with no negative effect on cell growth and ABE production. Copyright © 2011 Society of Chemical Industry  相似文献   

5.
陈强  董晋军  许国超  韩瑞枝  倪晔 《化工进展》2015,34(12):4214-4219
糖丁基梭菌Clostridium saccharobutylicum DSM 13864能利用多种糖类为底物发酵产丁醇。本文研究了该菌体细胞表面的理化特性,并以砖块作为细胞固定化材料进行丁醇发酵。采用细菌吸附有机溶剂(MATS)法证明糖丁基梭菌细胞表面有强烈的亲水性,并且等电点在pH值为3左右,这些特性有利于菌体与表面亲水多孔的砖块吸附。在60g/L葡萄糖发酵培养基中,以5~8目砖块作为固定化材料,流速为1.1L/min,发酵48h后,丁醇的浓度、得率和生产率分别达到11.02g/L、0.18g/g和0.23g/(L·h),相比悬浮细胞发酵分别提高了10.53%、5.88%和9.52%。结果表明:砖块作为一种固定化材料可有效提高糖丁基梭菌的发酵产丁醇水平。  相似文献   

6.
采用发酵产物中的二氧化碳(CO2)和氢气(H2)作为循环气提气源,对丙酮丁醇梭菌(Clostridium acetobutylicum CGMCC 5234)发酵产物进行原位气提,实现丙酮、丁醇和乙醇混合物(ABE)的连续纤维床固定化发酵生产。连续发酵实验进行了12批次共309 h,总溶剂ABE当量浓度为133.3 g·L-1(其中丁醇 83.5 g·L-1,丙酮38.4 g·L-1,乙醇11.4 g·L-1),葡萄糖消耗率为1.29 g·(L·h) -1,总溶剂ABE产率为0.431 g·(L·h) -1,转化率为0.333 g·g-1,其中丁醇产率为0.270 g·(L·h) -1,转化率为 0.209 g·g-1,发酵液中丁醇浓度控制在8~12 g·L-1,显著优于游离发酵的结果。气提提取之后冷凝的ABE溶液出现分层现象,其中丁醇相丁醇浓度高达603.7 g·L-1,极大地减缓后续分离提纯的负担。结果表明,自产气循环气提与纤维床固定化耦合连续发酵生产ABE(特别是丁醇)的工艺具有可行性和竞争力。  相似文献   

7.
An effective in situ recovery of acetone, butanol and ethanol (ABE) from fermentation broth is requisite to overcome the low productivity of ABE production. Pervaporation has proven to be one of the best methods for recovering ABE from fermentation broth. We fabricated an immobilized ionic liquid-polydimethylsiloxane (PDMS) membrane in which a [Tf2N]? based ionic liquid covalently bound to the PDMS backbone polymer and used it to recover ABE from aqueous solution by pervaporation. Permeate flux of immobilized IL-PDMS membrane was 7.8 times higher than that of conventional supported IL-PDMS membrane (where ILs are physically absorbed on the supported membrane). Butanol enrichment factor of immobilized IL-PDMS membrane was three-times higher than that of PDMS membrane. In addition, high enrichment factor both to acetone and ethanol as well as high operational stability of immobilized IL-PDMS membrane can enhance the efficacy of ABE recovery by employing this membrane.  相似文献   

8.
An integrated fermentation and membrane‐based recovery (pervaporation) process has certain economical advantages in continuous conversion of biomass into alcohols. This article presents new pervaporation data obtained for poly[1‐(trimethylsilyl)‐1‐propyne] (PTMSP) samples synthesized in various conditions. Three different catalytic systems, TaCl5/n‐BuLi, TaCl5/Al(i‐Bu)3, and NbCl5 were used for synthesis of the polymers. It was found that the catalytic system has a significant influence over the properties of membranes made from PTMSP. Although a combination of a high permeation rate and a high ethanol–water separation factor (not less than 15) was provided by all PTMSP samples, the PTMSP samples synthesized with TaCl5/n‐BuLi showed significant deterioration of membrane properties when acetic acid was present in the feed. In contrast, the PTMSP samples synthesized with TaCl5/Al(i‐Bu)3 or NbCl5 showed stable performance in the presence of acetic acid. When using a multicomponent mixture of organics and water, the copermeation of different organic components results in lower separation factor for both ethanol and butanol. These data are consistent with nanoporous morphology of PTMSP. It was demonstrated that pervaporative removal of ethanol improved the overall performance of the fermentation process. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2271–2277, 2004  相似文献   

9.
Pyrolytic lignin can be transformed to liquid transportation fuels by hydrotreatment, which requires hydrogen (H2). Bio‐oil is a suitable renewable feedstock for H2 production. Here, n‐butanol was chosen as a model compound representing alcohols in the bio‐oil aqueous fraction. H2 production from steam reforming of n‐butanol was investigated in a fixed‐bed reactor using a commercial Ni/hydrotalcite catalyst. A plausible reaction pathway in the presence of Ni was discussed. An increase in reforming temperature, space time, and steam/carbon ratio in the feed enhanced the n‐butanol conversion and H2 yield. Reaction kinetics was studied in the defined chemical control regime. The reaction order with respect to n‐butanol (one) and the activation energy were determined.  相似文献   

10.
Pervaporation of aqueous mixtures of ethanol, acetone, butanol, isobutanol, and furfural through polystyrene‐b‐polydimethylsiloxane‐b‐polystyrene (SDS) triblock copolymer membranes is reported. These mixtures are important for biofuel production from lignocellulosic feedstocks. Feedstock depolymerization results in the formation of furfural which must be removed before fermentation. Ethanol, butanol, isobutanol, and acetone are important fermentation biofuels. The membrane selectivity of SDS is about unity over a wide range of concentrations of aqueous ethanol mixtures, similar to the membrane selectivity of crosslinked polydimethylsiloxane (PDMS). The permeabilities of butanol, isobutanol, and furfural are larger than those of ethanol and acetone. The volatile organic compound permeability through SDS is similar to or higher than that through PDMS across a broad range of temperatures and feed concentrations is found. More selective and permeable membranes are needed to lower the cost of biofuel purification. The SDS membranes developed are but one step toward improved membranes. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2789–2794, 2015  相似文献   

11.
提出梭菌/酵母混合培养耦联乙酸外添体系强化丙酮合成的ABE发酵新策略,可以同时强化丁醇特别是丙酮的合成。与对照组相比,外添化学合成乙酸时,丁醇、丙酮质量浓度和丙酮/丁醇质量比分别达到13.91、8.27 g/L和0.59,增幅分别为19.6%、41.1%和18.0%;外添廉价的乙酸发酵上清液时,相应的发酵指标达到14.23、8.55 g/L和0.60,增幅分别为22.4%、46.0%和20.0%,发酵原料成本降低、丙酮发酵生产的可行性提高。结果表明,该发酵策略可刺激有利于梭菌生存和丁醇合成的4种氨基酸的分泌;可以在保证丁醇正常合成的前提下,适度抑制NADH再生、降低细胞能量周转、强化丙酮生物合成,进而显著改善了ABE发酵性能。  相似文献   

12.
Advances in high‐throughput process development and optimization involve the rational use of miniaturized stirred bioreactors, instrumented shaken flasks and microtiter plates. As expected, each one provides different levels of control and monitoring, requiring a compromise between data quantity and quality. Despite recent advances, traditional shaken flasks with nominal volumes below 250 mL and microtiter plates are still widely used to assemble wide arrays of biotransformation/bioconversion data, because of their simplicity and low cost. These tools are key assets for faster process development and optimization, provided data are representative. Nonetheless, the design, development and implementation of bioprocesses can present variations depending on intrinsic characteristics of the overall process. For each particular process, an adequate and comprehensive approach has to be established, which includes pinpointing key issues required to ensure proper scale‐up. Recently, focus has been given to engineering characterization of systems in terms of mass transfer and hydrodynamics (through gaining insight into parameters such as kLa and P/V at shaken and microreactor scale), due to the widespread use of small‐scale reactors in the early developmental stages of bioconversion/biotransfomation processes. Within this review, engineering parameters used as criteria for scaling‐up fermentation/bioconversion processes are discussed. Particular focus is on the feasibility of the application of such parameters to small‐scale devices and concomitant use for scale‐up. Illustrative case studies are presented. Copyright © 2010 Society of Chemical Industry  相似文献   

13.
BACKGROUND: Owing to the rapid depletion of petroleum fuel, the production of bio‐butanol has attracted much attention. However, low butanol productivity severely limits its potential industrial application. It is important to establish an approach for recovering low‐concentration butanol from fermentation broth. Experiments were conducted using batch adsorption mode under different conditions of initial butanol concentration and temperature. Batch adsorption data were fitted to Langmuir and Freundlich isotherms and the macropore diffusion, pseudo‐first‐ and second‐order models for kinetic study. RESULTS: The maximum adsorption capacity of butanol onto KA‐I resin increase with increasing temperature, ranged from 139.836 to 304.397 mg g?1. The equilibrium adsorption data were well fitted by the Langmuir isotherm. The adsorption kinetics was more accurately represented by the macropore diffusion model, which also clearly predicted the intraparticle distribution of the concentration. The effective pore diffusivity (Dp) was dependent upon temperature, but independent of initial butanol concentration, and was 0.251 × 10?10, 0.73 × 10?10, 1.32 × 10?10 and 4.31 × 10?10 m2 s?1 at 283.13, 293.13, 303.13 and 310.13 K, respectively. CONCLUSION: This work demonstrates that KA‐I resin is an efficient adsorbent for the removal of butanol from aqueous solutions and available for practical applications for future in situ product recovery of butanol from ABE fermentation broth. Copyright © 2012 Society of Chemical Industry  相似文献   

14.
渗透汽化法从丙酮-丁醇-乙醇中分离浓缩丁醇   总被引:1,自引:0,他引:1  
发酵法生产丁醇的产物质量浓度很低,为了实现丁醇的高效分离浓缩,文中采用渗透汽化膜分离技术对模型发酵液(丙酮、丁醇、乙醇混合溶液,ABE)进行浓缩实验。结果表明:随着温度、真空度、错流速度、料液质量浓度的增大,丁醇通量上升;渗透汽化膜对丁醇选择性在温度50℃时最佳,并随真空度的减小而减小,随料液质量浓度的增大而降低。实验证明,渗透汽化法能实现丁醇的高效分离浓缩,并且利用串联阻力溶解扩散模型可较好地预测ABE溶液体系中各组分的传质和分离效果。  相似文献   

15.
BACKGROUND: Owing to the rapid depletion of petroleum fuel, the production of butanol through biological routes has attracted increasing attention. However, low butanol productivity severely impedes its potential industrial production. It is known that the immobilization of whole cells can enhance productivity in the acetone‐butanol‐ethanol (ABE) continuous fermentation process. Therefore, the objective of this study was to develop a low‐cost continuous operation for butanol production. RESULTS: Bricks were chosen as cell support because of their low cost and ease of use for immobilization. The solvent productivity for the bricks with immobilized cells was 0.7 g L?1 h?1, 1.89 times that of free cells (0.37 g L?1 h?1) at a dilution rate of 0.054 h?1. The productivity improvement can contribute to greater retention of biomass inside the reactor due to immobilization. The increase in glucose feed concentration raised total solvent production. However, it resulted in a decrease in yield (grams of solvents produced per gram of glucose introduced). Continuous operation with immobilized cells at a dilution rate of 0.107 h?1 resulted in a solvent productivity of 1.21 g L?1 h?1, 2.1 times that of the operation at 0.027 h?1. However, the yield (butanol produced per glucose consumed) was decreased to 0.19 from 0.29 under the same glucose feeding condition of 60 g L?1. CONCLUSION: The increase in dilution rate and feed glucose concentration enhanced productivity, but decreased the utilization of substrates and the final solvent concentration. Therefore, a balance between productivity and glucose utilization is required to ensure continuous process operation. Copyright © 2011 Society of Chemical Industry  相似文献   

16.
Pervaporation (PV) has attracted increasing attention because of its potential application in bio-butanol recovery from fermentation process. In this work, PDMS/ceramic composite membrane was employed for PV separation of acetone–butanol–ethanol (ABE) aqueous solutions. The influence of coupling effect on the molecular transport during the PV process was systematically investigated. The separation performance and transport phenomena of ABE molecules were discussed based on the analysis and calculation of physicochemical properties such as solubility parameter, polarity parameter, interaction parameter, activity coefficient. The results suggested that the ABE separation factor was mainly determined by the intrinsic solubility parameter and driving force. Coupling effect in the ABE multicomponent system was closely related to the interaction parameters between components themselves and between component and membrane. Also, the PDMS membrane was integrated with ABE fermentation to construct an efficient intensification process. It was found that the rate matching of fermentation and in situ removal could improve the ABE productivity by 2 times.  相似文献   

17.
谢方  王浩  许萌  丁健  罗洪镇  史仲平 《化工进展》2018,37(5):1940-1948
强化利用丙丁梭菌发酵生产丁醇的主要方法有:添加电子载体强化NADH再生速率、通CO气体抑制氢化酶活性、外添少量丁酸等。但是,上述方法存在着总溶剂产量低、精制成本高、辅料价格昂贵等缺点。本研究通过向丙酮-丁醇-乙醇(ABE)发酵液添加少量电子受体(Na2SO4/CaSO4,2g/L),使得梭菌胞内的电子穿梭传递系统的电子流和质子流发生改变,较多电子e-和质子H+走向NADH合成途径,有利于丁醇合成;电子受体添加还可以促进对梭菌生存/丁醇合成的“有益”氨基酸、特别是缬氨酸的胞内积累/分泌,进一步强化了丁醇生产。在7L罐规模的发酵条件下、添加2g/L的电子受体Na2SO4,ABE发酵的丁醇浓度达到12.96g/L的最高水平,丁醇/丙酮比也有提高,分别比对照组提高35%和10%。添加Na2SO4等廉价电子受体提高了ABE发酵中的丁醇浓度,虽然提高幅度有限,但却可为利用发酵工程技术提高丁醇浓度和丁醇/丙酮比提供一种新的途径。  相似文献   

18.
Biobutanol is a biofuel with potential to substitute gasoline. It can be generated through fermentation of lignocellulosic material, by which acetone, butanol, and ethanol (ABE) are obtained and subsequently separated. Nevertheless, the blend ethanol/butanol itself is a fuel, so its separation could be not even necessary. An alternative is proposed to simplify the purification step of the ABE mixture, avoiding the separation of the ethanol/butanol blend. Intensification alternatives are suggested for the resulting structure. The proposed schemes are optimized through a stochastic approach, minimizing the total annual cost and the eco‐indicator 99. The individual risk index is computed for selected designs. The suggested designs reduce the individual risk index by around 30–66 %.  相似文献   

19.
Modification of poly(tetrafluoroethylene‐co‐ethylene), Tefzel (ETFE), film has been carried out by grafting methylmethacrylate (MMA) by radiation method including preirradiation and double‐irradiation methods. Percentage of grafting has been determined as a function of the (i) total dose, (ii) monomer concentration, (iii) amount of liquor ratio, (iv) reaction time, and (v) temperature.The effect of different alcohols such as methanol, ethanol, 2‐propanol, n‐butanol, n‐pentanol, and 2‐ethoxy ethanol on percentage of grafting of MMA was also studied. The graft copolymers were characterized by IR spectroscopy and thermogravimetric analysis (TGA). Methylmethacrylate produces higher percentage of grafting by preirradiaton method than double‐irradiation method. MMA‐grafted ETFE films (Sirr), i.e., prepared by preirradiation involving single irradiation show better thermal stability than MMA‐grafted ETFE films (Dirr), i.e., prepared by double irradiation and unmodified ETFE film. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
Acetone–butanol–ethanol(ABE)fermentation process can be exploited for the generation of butanol as biofuel,however it does need to overcome its low volumetric solvent productivity before it can commercially compete with fossil fuel technologies.In this regard,mathematical modelling and simulation analysis are tools that can serve as the base for process engineering development of biological systems.In this work,a novel phenomenological kinetic model of Clostridium acetobutylicum ATCC 824 was considered as a benchmark system to evaluate the behaviour of an ABE fermentation under different process configurations using both free and immobilized cells:single stage batch operation,fed-batch,single stage Continuous Stirred Tank Reactor(CSTR)and multistage CSTRs with and without biomass recirculation.The proposed model achieved a linear correlation index r~2=0.9952 and r~2=0.9710 over experimental data for free and immobilized cells respectively.The predicted maximum butanol concentration and productivity obtained were 13.08 g·L~(-1)and 1.9620 g·L~(-1)·h~(-1)respectively,which represents an increase of 1.01%and 990%versus the currently developed industrial scale process reported currently into the literature.These results provide a reliable platform for the design and optimization of the ABE fermentation system and showcase the adequate predictive nature of the proposed model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号