首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
BACKGROUND: This study focused on the effectiveness of the zero‐valent iron (ZVI) pre‐treatment for enhancing the biodegradability of 2‐chloronitrobenzene (2‐ClNB), and further to evaluate the performance and mechanism of a coupled ZVI column–sequencing batch reactor (SBR) system treating 2‐ClNB contained wastewater. RESULTS: 2‐ClNB was readily transformed into 2‐chloroaniline (2‐ClAn) with the efficiency over 99.9% by ZVI column, and its biodegradability was significantly enhanced via ZVI pretreatment. The transformed effluent was subsequently fed into the SBR followed by 2‐ClAn loading of 3.4–117.2 g m?3 d?1 and COD loading around 1000 g m?3 d?1. A 2‐ClAn removal efficiency over 99.9% and COD removal efficiency of 82.0–98.1% were obtained. Moreover, 91.9 ± 0.1% TOC removal efficiency and 107.1 ± 6.0% chloride recovery efficiency during one cycle confirmed the complete biodegradation of 2‐ClAn in the coupled system. 16S rDNA PCR‐DGGE analysis suggested that ZVI pretreatment enhanced the diversity of the microbial community and promoted enrichment of the functional microorganisms degrading 2‐ClAn in the following SBR. CONCLUSION: ZVI pretreatment significantly enhanced the biodegradability of 2‐ClNB, and the coupled ZVI–SBR system demonstrated excellent performance when treating wastewater containing 2‐ClNB. Copyright © 2011 Society of Chemical Industry  相似文献   

7.
BACKGROUND: Dinitrotoluenes (DNTs) are environmentally persistent, making the remediation of contaminated streams and groundwater difficult. Zero‐valent iron (Fe0) can be used as an electron source for the reduction of recalcitrant DNTs in waste‐water and thus enhance their biodegradability. However, little is known about the qualitative effects of major anions and cations present in waste‐water on the reduction of DNTs by Fe0. RESULTS: The presence of Na2SO4 and NaCl at levels between 0.25 and 2 mmol L?1 was observed to enhance the reactivity of Fe0 towards 2,4‐DNT. The positive effect of K2SO4 is stronger than that of Na2SO4 at the same level (1 mmol L?1). Varying (NH4)2SO4 from 0.1 to 1.0 mmol L?1 improved the efficiency of 2,4‐DNT degradation by Fe0. The effects of varying NaNO3 and NaNO2 from 0 mmol L?1 to 4.7 mmol L?1 and 0 mmol L?1 to 5.8 mmol L?1, respectively, were also investigated. Both NaNO3 and NaNO2 at low concentration improved the efficiency of 2,4‐DNT degradation by Fe0, however, at high concentration, inhibiting effects appeared. CONCLUSION: SO42?, Cl?, Na+, K+ and NH4+ notably enhanced 2,4‐DNT reduction by Fe0 at the tested concentrations. The positive effect of K+, Cl? was relatively stronger than that of Na+ and sulfate (SO42?). However, the effect of NH4+ was relatively weaker at concentrations greater than 1.0 mmol L?1. The presence of low concentrations of NO3? and NO2? promoted 2,4‐DNT reduction by Fe0 and inhibited the reaction. The results suggest that 2,4‐DNT reduction by Fe0 can be controlled by the ions composition of the waste‐water. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
BACKGROUND: Zero‐valent iron (ZVI) is increasingly being applied in biological wastewater treatment to enhance the conversion of various contaminants. The objective of this present study was to investigate the effect of ZVI on the anaerobic biotransformation and dechlorination of chloronitrobenzenes (3,4‐DClNB and 4‐ClNB). Experiments were conducted in two upflow anaerobic sludge blanket (UASB) reactors, one (R2) with 30 g L?1 ZVI added, and the other (R1), serving as control reactor. RESULTS: ZVI‐based anaerobic granular sludge (ZVI‐AGS) composed of bacteria associated with precipitated FeCO3 and FeS was successfully developed within 5 months in reactor R2. ZVI addition obviously enhanced 3,4‐DClNB transformation and dechlorination efficiencies under high 3,4‐DClNB loads, and further promoted dechlorination of 4‐chloroaniline (4‐ClAn) to aniline. Compared with the AGS formed in R1 reactor, iron and its corrosion products were observed and colonized with anaerobes such as methanothrix in ZVI‐AGS, and the specific transformation rates of 3,4‐DClNB and 4‐ClNB using ZVI‐AGS were improved by 34.0% and 64.4%, respectively. Furthermore, ZVI‐AGS provided higher 3,4‐dichloronailine and 4‐ClAn dechlorination efficiency than AGS. Abiotic transformation of ClNBs by ZVI, appropriate concentration of iron corrosion products, lower redox potential and greater hydrogen production were the main factors providing enhanced transformation and dechlorination of ClNBs in the UASB reactor. CONCLUSION: Addition of ZVI to a UASB reactor enhanced the reductive transformation and dechlorination of ClNBs. It provides a feasible proposal for the design and optimization of a high‐rate anaerobic wastewater treatment technique for industrial wastewater. Copyright © 2010 Society of Chemical Industry  相似文献   

9.
The reductive degradation of Orange II in aqueous solution by zero‐valent iron was investigated. The degradation of Orange II followed pseudo‐first‐order kinetics at various pH values and initial Orange II levels, but the formation of sodium sulfanilate, a major reductive product of Orange II, followed zero‐order kinetics. Copyright © 2004 Society of Chemical Industry  相似文献   

10.
杨晓丹  王玉如  李敏睿 《化工进展》2019,38(7):3412-3424
纳米零价铁(nZVI)结合了零价铁还原性强和纳米材料比表面积大的特点,能够高效去除水体中的重金属和有机污染物,是当前环境科学领域研究的热点之一。研究表明单一nZVI颗粒存在易团聚及表面易被氧化等问题,影响nZVI颗粒形态和对污染物去除效果,限制了其在环境修复中的应用。针对目前的研究现状,本文分析并总结了以下内容:①nZVI常用的制备方法;②提高nZVI活性与稳定性的改性方法,如合成时添加表面活性剂和负载材料;③nZVI去除废水中Cr、Cd、Cu和As等重金属和硝基苯、氯代芳烃、氯代脂肪烃等有机污染物的主要机理及影响因素;④应用于自然环境中的nZVI可能对环境产生的毒理学效应和在环境修复过程中存在的潜在风险及其评估;⑤对nZVI今后的研究重点和方向进行分析和展望。  相似文献   

11.
12.
Chitosan beads were cross‐linked with glutaraldehyde (GA) and epichlorohydrin (EP), respectively, at variable composition. The general features of the adsorptive and textural properties of the bead systems were characterized using p‐nitrophenolate (PNP) at pH 8.5. As well, a systematic adsorption study of phosphate dianion (phosphate ( ) species was carried out in aqueous solution at pH 8.5 and 295 K. The Sips isotherm model yielded adsorption parameters for the chitosan bead systems: (i) monolayer adsorption capacity (Qm) for PNP ranged from 0.30 to 0.52 mmol g?1 and (ii) Qm values for the bead systems with ranged from 22.4–52.1 mg g?1 for these conditions. GA cross‐linked beads reveal greater Qm values for PNP while EP cross‐linked beads showed greater Qm values for , in accordance with the surface chemistry and the materials design described herein. The EP cross‐linked beads show favorable adsorption–desorption properties and represents a promising tunable adsorbent system for the effective removal of phosphate dianion species in aqueous solution. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42949.  相似文献   

13.
BACKGROUND: This study reports on the effects of aging on suspension behavior of biodegradable polymer‐coated nano‐zero‐valent iron (nZVI) and its degradation rates of hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine (RDX) under reductive conditions. The polymers investigated included guar gum, potato starch, alginic acid (AA), and carboxymethyl cellulose (CMC). Polymer coating was used to mitigate nZVI delivery hindrance for in situ treatment of RDX‐contaminated groundwater. RESULTS: The RDX degradation rates by bare nZVI and starch‐coated nZVI suspensions were least affected by aging although these suspensions exhibited the least favorable dispersion behavior. CMC, AA, and guar gum coating improved nZVI rates of degradation of RDX but these rates decreased upon aging. The best suspension stability upon aging was achieved by CMC and AA. Guar gum with loadings rates one order of magnitude lower than that of CMC and AA achieved good iron stabilization but significantly higher RDX degradation rates. CONCLUSION: It is demonstrated that both migration and reactivity of polymer‐stabilized nZVI should be explicitly evaluated over a long period before application in the field. Guar gum coated nZVI appeared best suited for in situ application because it maintained good suspension stability, with RDX degradation rates least affected by aging compared with the other polymers tested. © 2012 Society of Chemical Industry  相似文献   

14.
15.
16.
The work presents the synthesis of nickel (II) complex of dithiocarbamate‐modified starch (DTCSNi). It is characterized by elemental analysis, infrared spectrum, and thermogravimetry methods. A batch system was applied to study the adsorption of DTCSNi for four anionic dyes removals. The adsorption with respect to the pH was investigated. It is found that the capacity of DTCSNi for each dye is pH dependent, and the adsorption is governed by coordination. At the suitable pH 4, two kinetic models, that is, pseudo‐first‐ and pseudo‐second‐order, were tested to investigate the adsorption process. The kinetic parameters of the models were calculated and discussed. The results suggest that the best fit model is the pseudo‐second‐order equation. The Langmuir–Freundlich model agrees very well with experimental data and the maximum adsorption capacity sequence is AO7 > AG25 > AR18 > AO10. The Fourier transform infrared spectra and thermogravimetric analysis verified the chelating molecular mechanism. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
New polymeric structures obtained by chemical transformations of maleic anhydride/dicyclopentadiene copolymer with triethylenetetraamine, p‐aminobenzoic acid, and p‐aminophenylacetic acid were used for the removal Cu(II) ions from aqueous solutions. The experimental values prove the importance of the chelator nature and of the macromolecular chain geometry for the retention efficiency. The retention efficiency (ηr), the retention capacity (Q e ), and the distribution coefficient of the metal ion into the polymer matrix (K d ) are realized by evaluation of residual Cu(II) ions in the effluent waters, by atomic adsorption. Also are discussed the influence of pH, the thermal stability of the polymer, and their polymer–metal complex, as well as the particular aspects regarding the contact procedure and the batch time. Based on the polymers and polymer–metal complexes characterization a potential retention mechanism is proposed. All polymer supports as well theirs metal–complexes are characterized by ATD and FTIR measurements. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1397–1405, 2007  相似文献   

18.
The removal of single component and binary mixtures of divalent cobalt and iron from water by ion exchange with synthetic Y zeolite has been studied in batch, semi‐batch and continuous modes of operation; the initial metal solution concentration did not exceed 2 mmol dm?3. Binary Co/Na and Fe/Na ion exchange equilibrium isotherms (294 K) are presented wherein exchange site heterogeneity is evident in the case of the iron treatment. Under conditions of stoichiometric ion exchange, removal efficiencies for both cobalt and iron decrease with increasing metal concentration (0.2–2 mmol dm?3) and the values were similar for both metals. Removal of cobalt under transient conditions was found to be temperature dependent. In the fixed bed operation, break‐through behavior was sensitive to changes in both flow rate and inlet concentration. The break‐through profiles for both metals under competitive and non‐competitive conditions are presented; iron removal is lower in the presence of cobalt and vice versa. An in situ regeneration of the fully loaded zeolite by back exchange with sodium is considered and the exchange capacity of the regenerated zeolite is reported. The feasibility of employing cycles of heavy metal uptake/zeolite regeneration is addressed. © 2002 Society of Chemical Industry  相似文献   

19.
The swelling behavior of poly (acrylamide‐co‐maleic acid) hydrogels has been investigated in distilled water at 30°C. The gels were characterized with respect to structural parameters, Fourier transform infrared, and thermogravimetric analysis. The gels showed fair pH‐dependent swelling and exhibited double “s”‐shaped curve between equilibrium water uptake and pH of the swelling media. The two pKa values, as determined from the curve, were found to be 2.46 and 6.58. The activation energy of the water uptake process for plain and acid containing gels was found to be 7.93 and 3.26 kJ mol?1 respectively. Similarly, the enthalpy of mixing between dry polymer and solvent showed positive values, thus indicting endothermic nature of the process, and the values increased from 10.06 to 16.29 kJ mol?1 with increase in acid content from 2.1 × 10?1 to 4.7 × 10?1 mM respectively. There was an optimum initiator concentration 24.0 × 10?2 mM and reaction temperature 60°C at which gels synthesized showed maximum absorbency. The dilution of the reaction mixture resulted in the formation of hydrogels with enhanced absorbency. Finally, the gels with varying content of monomer acid in the feed mixture showed different swelling behavior when studied in the medium of pH 1.0 and 7.0. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2759–2769, 2006  相似文献   

20.
A hyper‐crosslinked resin chemically modified with thiourea (TM‐HPS) was synthesized, characterized, and evaluated for the removal of heavy metal ions (Pb2+, Cd2+, and Cu2+) from aqueous solutions. The structural characterization results showed that a few thiourea groups were grafted on the surface of the resin with a big BET surface area and a large number of narrow micropores. Various experimental conditions such as pH, contact time, temperature, and initial metal concentration of the three heavy metal ions onto TM‐HPS were investigated systematically. The results indicated that the prepared resin was effective for the removal of the heavy metal ions from aqueous solutions. The isotherm data could be better fitted by Langmuir model, yielding maximum adsorption capacities of 689.65, 432.90, and 290.69 mg/g for Pd2+, Cd2+, and Cu2+, respectively. And the adsorption kinetics of the three metal ions followed the pseudo‐second‐order equation. FTIR and XPS analysis of TM‐HPS before and after adsorption further revealed that the adsorption mechanism could be a synergistic effect between functional groups and metal ions and electrostatic attraction, which may provide a new insight into the design of highly effective adsorbents and their potential technological applications for the removal of heavy metal ions from aqueous solutions. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45568.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号