共查询到20条相似文献,搜索用时 93 毫秒
1.
基于特征事务元素的用户事务聚类方法研究 总被引:2,自引:2,他引:2
针对现有用户访问事务聚类算法复杂度较高的问题,文章提出了一种新的用户事务聚类算法。首先对用户事务中访问过的页面浏览次数和时间进行综合统计,并定义了函数,将其映射为页面访问时间属性值;其次通过抽取事务的特征事务元素集,建立新的聚类对象集事务,实现对原有事务的降维。最后给出计算事务相似度的方法.并得到一个模糊相似度矩阵以实现事务聚类。该算法具有较高的准确性,计算复杂度低,扩展性好,可以广泛地应用于电子商务领域。 相似文献
2.
3.
4.
利用一种混合聚类算法对用户聚类方法进行分析.给出了此混合聚类算法的应用公式以及在用户聚类算法中应用的思路,最后给出了该算法的具体实现过程. 相似文献
5.
本文提出了一种基于遗传算法.结合网站拓朴分析.对URL实行树型层次编码为基础的Web用户聚类计算模型。讨论了描述、跟踪用户行为,实现Web用户聚类的方法。阐述聚类所要考虑的相关问题,并给出聚类的实验分析。 相似文献
6.
文章提出了一种基于ISODATA的用户访问路径聚类算法,根据用户的访问兴趣定义了相似性测量手段和聚类中心。在对Web站点的访问日志进行事务识别后,根据群体用户对Web站点的访问顺序进行聚类,则每一个聚类集反映出该聚类集中的全体用户具有相似的访问兴趣。 相似文献
7.
提出利用MDS(Multidimensional Scaling)变换聚类算法提取数字电视用户的收视特征,解决了传统聚类算法因中间聚类中心无距离度量而无法应用的问题.基于实际运行的有线数字电视系统,建立了由时间、频道、节目主类别、节目子类别表述的节目特征模型及节目差异模型;提出了基于MDS聚类算法提取用户收视特征的具体步骤;基于实际用户收视记录的计算结果具有特征一致性,以提取特征为基准的节目推荐结果与用户实际的收视记录比对,具有70%准确性. 相似文献
8.
随着Internet的迅速发展,人们必须面对信息爆炸的现实。描述了一种关键词向量的方式表达用户兴趣。将BIRCH聚类算法应用于用户访问的网络文档上来建立用户兴趣模型。基于Myspace用户日志,又实现了一个用户兴趣建模系统,该系统验证了提出方法的有效性。 相似文献
9.
网络用户随时间变化的行为分析是近年来用户行为分析的热点,通常为了发现用户行为的特征需要对用户做聚类处理。针对用户时序数据的聚类问题,现有研究方法存在计算性能差,距离度量不准确的缺点,无法处理大规模数据。为了解决上述问题,该文提出基于对称KL距离的用户行为时序聚类方法。首先将时序数据转化为概率模型,从划分聚类的角度出发,在距离度量中引入KL距离,用以衡量不同用户间的时间分布差异。针对实网数据中数据规模大的特点,该方法在聚类的各个环节针对KL距离的特点做了优化,并证明了一种高效率的聚类质心求解办法。实验结果证明,该算法相比采用欧式距离和DTW距离度量的聚类算法能提高4%的准确度,与采用medoids聚类质心的聚类算法相比计算时间少了一个量级。采用该算法对实网环境中获取的用户流量数据处理证明了该算法拥有可行的应用价值。 相似文献
10.
为了从用户地理空间分布数据中挖掘用户间关联关系,提出了一种基于谱聚类的关联关系挖掘算法.首先定义了关联度,用以衡量用户之间空间分布的相似性,基于关联度构造相似矩阵,再利用谱聚类方法对用户进行聚类分析,聚类结果表征了用户的关联关系.采用Silhouette指标和聚类准确率来衡量用户关系挖掘质量,同时与传统的K-Means方法进行了比较,通过真实数据集实验,结果表明该算法在实验数据集上能达到90%以上的聚类准确率,证明方法有效、可行. 相似文献
11.
12.
一种聚类算法在容错计算机系统中的应用 总被引:1,自引:1,他引:0
多数一致表决是常见的表决算法.该算法在选择最终结果之前须要对容错计算系统中N个模块的数据进行分类.以容错计算机系统中的表决算法为应用背景,考虑到该处理模块数量有限,设计一种即能完成预定功能又不过于复杂的聚类算法.仿真的结果显示该算法符合实际要求. 相似文献
13.
提出了一种改进的蚁群聚类分析算法,通过改进LF算法中群体相似度函数,加入参数的自适应调整策略,利用短期记忆和网格信息素的局部分布控制蚂蚁的随机移动,并结合蚂蚁速度动态变化、半径递增、强制放下等特性。采用测试数据和不同的算法进行了对比实验分析,仿真实验结果表明,该算法显示出了较高的稳定性和准确率。 相似文献
14.
15.
16.
为了提高红外图像匹配的精度和效率,提出了一种将Harris-Laplace关键点提取和旋转不变LBP特征描述算子相结合的局部特征检测新算法,该算法不仅在图像的尺度、光照和角度发生变化时,仍然能够得到很好的检测效果,而且能很好地描述图像的局部纹理特征.特征向量描述完成后,为了进一步提高红外图像特征点匹配的正确率,提出了一种基于K-means聚类分析的图像匹配策略.先利用Cosine余弦相关匹配策略实现特征点的初步粗匹配,接着采用K-means 聚类分析匹配策略剔除图像中大部分的错误匹配.实验表明:提出的算法表现出良好的鲁棒性,关键点提取的重复率(Repeatability)提高了9.2%.与传统的匹配算法相比,采用基于K-means聚类分析的匹配策略匹配精度可以提高5.05%,匹配时间可以缩短0.068 s.该特征描述算法和基于K-means聚类分析的匹配算法满足了红外图像配准的高精度性和高实时性的要求. 相似文献
17.
针对固定网格划分技术存在的维度可扩展性差,而自适应网格划分技术未充分考虑数据集分布特征等问题,提出了一种基于概率统计理论的自适应网格聚类算法.采用概率统计和图覆盖技术,且能识别任意形状和大小的聚类,时间复杂度是数据集大小和数据维度的线性函数.实验结果表明该聚类是有效的. 相似文献
18.
传统层次聚类算法中经常会遇到合并点和分裂点选择的问题,一旦一组对象被合并或者分裂,下一步的处理将在新生成类上进行,已做处理不能撤销,这样有可能导致低质量的聚类结果.针对这个问题,文中提出了一种模糊加权层次聚类改进算法,每次分层聚类时先计算对象属于这个类可靠度,然后和阀值进行比较,当可靠度小于阀值时重新确定对象的归属类,这样就解决了上述问题.最后通过实验验证,该算法确实可行有效. 相似文献
19.
20.
针对聚类的入侵检测算法误报率高的问题,提出一种主动学习半监督聚类入侵检测算法.在半监督聚类过程中应用主动学习策略,主动查询网络中未标记数据与标记数据的约束关系,利用少量的标记数据生成正确的样本模型来指导大量的未标记数据聚类,对聚类后仍未能标记的数据采用改进的K-近邻法进一步确定未标记数据的类型,实现对新攻击类型的检测.实验结果表明了算法的可行性及有效性. 相似文献