首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Error probability analyses are performed for a coded M-ary frequency-shift keying system (MFSK) using L hops per M-ary word frequency-hopping spread-spectrum waveforms transmitted over a partial-band Gaussian noise jamming channel. The bit error probabilities are obtained for a square-law adaptive gain control receiver with forward-error-control coding under conditions of worst-case partial-band noise jamming. Both thermal noise and jamming noise are included in the analyses. Performance curves are obtained for both block codes and convolutional codes with both binary and M-ary channel modulations. The results show that thermal noise cannot be neglected in the analysis if correct determinations of the optimum order of diversity and the worst-case jamming fraction are to be obtained. It is shown that the combination of nonlinear combining, M -ary modulation, and forward-error-control coding is effective against worst-case partial-band noise jamming  相似文献   

2.
The authors consider frequency-hopped spread-spectrum multiple-access communications using M-ary modulation and error-correction coding. The major concerns are multiple-access interference and the network capacity in terms of the number of users that can transmit simultaneously for a given level of codeword error probability. Block coding is studied in detail. The authors first consider the use of Q-ary Reed-Solomon (RS) codes in combination with M-ary modulation with mismatched alphabets so that Q>M. It is shown that the network capacity is drastically reduced in comparison with the system with matched alphabets. As a remedy, the use of matched M-ary BCH codes is proposed as an alternative to mismatched RS codes. It is shown that when the number of users in the system is large, a BCH code outperforms an RS code with a comparable code rate and decoding complexity. The authors consider the use of a robust technique for generation of reliable side information based on a radio-threshold test. They analyze its performance in conjunction with MFSK and error-erasure correction decoding. It is shown that this nonideal ratio-threshold method can increase the network capacity in comparison with the system with perfect side information  相似文献   

3.
A link throughput analysis is presented for a slotted frequency-hop multiple-access (FHMA) packet radio network (PRN) operating in the presence of background noise, partial-band noise jamming, and partial-band tone jamming. The PRN consists of an arbitrary number of transceivers arranged in a paired-off topology. Forward error-correction coding is used for packet protection. M-ary FSK modulation is used with hard-decision decoding. Expressions are derived for the link throughput in terms of the channel cutoff rate and capacity. The dependency of the optimal processing gain, code rate, and jamming fraction on the population size, traffic intensity, bit energy to background noise ratio, and bit energy to jammer noise ratio is examined in detail. It is shown that a properly designed (optimized) PRN using random-access FHMA offers a significantly larger heavy-load throughput than a random-access frequency-division multiple-access PRN  相似文献   

4.
A concatenated coded modulation scheme is presented for error control in data communications. The scheme is achieved by concatenating a Reed-Solomon outer code and a bandwidth efficient block inner code for M-ary phase-shift keying (PSK) modulation. Error performance of the scheme is analyzed for an additive white Gaussian noise (AWGN) channel. It is shown that extremely high reliability can be attained by using a simple M-ary PSK modulation inner-code and a relatively powerful Reed-Solomon outer code. Furthermore, if an inner code of high effective rate is used, the bandwidth expansion required by the scheme due to coding will be greatly reduced. The scheme is particularly effective for high-speed satellite communications for large file transfer where high reliability is required. A simple method is also presented for constructing block codes for M-ary PSK modulation. Soome short M-ary PSK codes with good minimum squared Euclidean distance are constructed. These codes have trellis structure and hence can be decoded with a soft-decision Viterbi decoding algorithm. Furthermore, some of these codes are phase invariant under multiples of 45° rotation  相似文献   

5.
A low-complexity pseudo-analog speech transmission scheme is proposed for portable communications. It uses a speech coder based on adaptive differential pulse code modulation (ADPCM) in combination with a multilevel digital modulation technique such as M-ary DPSK or M-ary FSK and features low quantization noise, bandwidth efficiency, and robustness to transmission errors. A nonsymmetric M -ary DPSK scheme called skewed M-ary DPSK is proposed to enhance the noisy channel performance. Comparison to conventional analog FM and a digital speech transmission scheme using adaptive predictive coding and forward error correction (FEC) based on convolutional coding shows that the pseudo-analog system has the best objective signal-to-noise ratio performance under most channel conditions. Informal subjective evaluations rate the digital system superior to the pseudo-analog scheme for bad channels and conversely for good channels. It is concluded that the pseudo-analog system can be designed with low delay and high speech quality for good channels with high spectral efficiency  相似文献   

6.
It is shown that for worst-case partial-band jamming, the error probability performance (for fixed Eb/NI) becomes worse with increasing M for (M>16). The asymptotic probability-of-error is not zero for any Eb/N I(>ln 2), but decreases inverse linearly with respect to it. In the fading case, the error-probability performance (for fixed Eb/N0) improves with M for noncoherent detection, but worsens with M for coherent detection. For large Eb/N0 the performance of the Rayleigh fading channel asymptotically approaches the same limit as the worst case partial-band jammed channel. However, for values of M at least up to 4096, the partial-band jammed channel does better. While it is unlikely that an M-ary orthogonal signal set with M>1024 will be used in a practical situation, these results suggest an important theoretical problem; namely, what signal set achieves reliable communication  相似文献   

7.
An error-correction scheme for an M-ary symmetric channel (MSC) characterized by a large error probability pe is considered. The value of pe can be near, but smaller than, 1-1/M, for which the channel capacity is zero, such as may occur in a jamming environment. The coding scheme consists of an outer convolutional code and an inner repetition code of length m that is used for each convolutional code symbol. At the receiving end, the m inner code symbols are used to form a soft-decision metric, which is passed to a soft-decision decoder for the convolutional code. The effect of finite quantization and methods to generate binary metrics for M>2 are investigated. Monte Carlo simulation results are presented. For the binary symmetric channel (BSC), it is shown that the overall code rate is larger than 0.6R0, where R0 is the cutoff rate of the channel. New union bounds on the bit error probability for systems with a binary convolutional code on 4-ary and 8-ary orthogonal channels are presented. For a BSC and a large m, a method is presented for BER approximation based on the central limit theorem  相似文献   

8.
A fully digital implementation of digital modems is the preferred option of system designers because high performance can be achieved at reasonable cost. The author explains the beneficial features inherent in fully digital demodulator implementations. Other features which are required for land mobile satellite communication systems are also discussed. Recently reported techniques for the synchronisation and detection of M-ary PSK and M-ary QAM modulation schemes are reviewed with emphasis placed on those which are well suited to digital implementation  相似文献   

9.
Decoding performance of Reed-Solomon (RS) coded M-ary FSK with noncoherent detection in a frequency-hopping spread spectrum mobile radio channel is theoretically analyzed. Exact formulas and an approximate one for evaluating word error rates (WERs) of error correction and error-and-erasure correction schemes on decoding the RS codes are derived. It is shown that with K symbol erasure and C symbol error detection, RS coded M-ary FSK achieves the equivalent diversity order of (K+1)(C+1)  相似文献   

10.
Shaw  M. Honary  B. Darnell  M. 《Electronics letters》1988,24(12):737-739
An optimisation technique for maximising the information throughput of an M-ary frequency-shift keyed (MFSK) transmission system is described. An upper bound for the error-free throughput of the system in the presence of additive white Gaussian noise (AWGN) for different numbers of tones, M, is derived. From this, the optimum range for M can be identified  相似文献   

11.
When JSI (jamming state information) is imperfect due to thermal noise, the capacities and cutoff rates of the channels are calculated as a function of the signal-to-jamming-noise ratio for memoryless, noncoherent FH/MFSK (frequency-hopped M-ary frequency-shift-keying) systems under partial-band noise jamming (PBNJ). Both soft- and hard-decision metrics with perfect, imperfect, and no JSI are considered. The first of three imperfect JSI generator uses the maximum a posteriori (MAP) decision rule based on the energy from an FH tone frequency which is near the M-signaling FH tone frequencies. The second decision rule utilizes the MAP rule, but it is based on the total energy received at the M-signaling FH tone frequencies. The third generator has the same decision statistics as the second generator, but its decision rule is an easily implementable suboptimum rule. If hard decision are made and code rates are high, then the differences between the imperfect JSI generators and perfect JSI generator can be larger than 1 dB. If soft decisions are made, then the differences between the imperfect and perfect JSI cases are negligible  相似文献   

12.
The interleaving span of coded frequency-hopped (FH) systems is often constrained to be smaller than the decoder memory length, i.e. nonideal interleaving is performed. An upper bound on the performance of a Viterbi decoder of a convolutional code with nonideal interleaving is presented. A soft decision diversity combining technique is introduced, and the performance of combined convolutional and diversity coding subject to worst-case partial band noise jamming is investigated. Optimization of the FH system performance subject to constraints of allowed delay and synthesizer settling time provides the best combination of interleaving span and hopping rate. The FH system considered employs M-ary frequency-shift key (MFSK) modulation and noncoherent demodulation with 2-b soft decision based on Viterbi's ratio-threshold technique  相似文献   

13.
Performance of convolutionally coded M-ary pulse position modulation (M-PPM) systems in the presence of slot synchronization errors is evaluated for the shot-noise-limited photon-counting receiver and the avalanche photodetection receiver. Both hard and soft (δ-max) demodulation results are given, and two soft-decision metrics are investigated  相似文献   

14.
The performance of a coherent optical M-ary continuous-phase frequency-shift-keying (CPFSK) receiver using limiter-discriminator (L-D) detection is investigated. It is shown that L-D detection of CPFSK optical signals offers the best performance for a large normalized IF beat spectral linewidth, ΔνT. When the modulation index is unity, the receiver is immune to laser phase noise and can produce (M/4) exp (-SNR) symbol error probability, which may be considered as the upper bound if the optimal modulation index is used (SNR is the signal-to-noise ratio per symbol). Optimum modulation indexes are 0.8 and 1 at ΔνT=1% and ΔνT=2%, respectively, for M=4, 8, and 16  相似文献   

15.
Consideration is given to the problems related to the design of M-ary continuous-phase frequency-shift keying (CPFSK) systems with modulation index h=J/M, combined with eternal rate r binary convolution encoders. The following questions are raised and answered: (1) how should different encoder-modulator systems be compared and how can comparable systems be recognized from the system parameters, i.e. M, h, and r?; (2) what are the limits on the information rate per unit bandwidth, versus signal-to-noise ratio, when reliable transmission is required?; (3) how does one choose the system parameters M, h, and r when the overall system has to achieve a specified performance?; and (4) how does one design the external rate r binary convolutional encoder to put in front of the M-ary CPFSK modulation system with h=J/M ? A simple approximation for the bandwidth of a CPFSK signal is given and shown to be sufficiently accurate for system design purposes. The design of the external convolutional encoder is carried out in a novel way that leads to fewer states in the combined encoder-modulator system and thus yields improved performance for a given demodulation-decoding complexity compared to previous approaches for the design of coded CPFSK systems  相似文献   

16.
A novel type of diversity signaling for an M-ary frequency-shift keyed modulation format involving the transmission of multiple tones on each diversity branch is considered. The properties of such a system are investigated, and its performance in the presence of tone jamming is analyzed. It is shown that significant gains can be realized with such a technique. The performance in the presence of worst-case partial band noise is briefly considered and shown to be worse than, though comparable to, that of the single-tone case  相似文献   

17.
A model for the semi-analytic performance evaluation of digital satellite radio links in the presence of interference on both the uplink and the downlink is presented. Error probability on the linear portion of the link is estimated using simulation to determine the moments of the interfering signal samples and analyzing the effect of an undetermined phase difference among carriers. The nonlinear portion of the link is modeled using a series expansion of the nonlinearity; the output terms are then separated, allowing construction of the conditional probability densities required in the error probability computation. Results are carried out for M-QAM (M-ary quadrature amplitude modulation) and M-PSK (M-ary phase-shift keying) modulation systems  相似文献   

18.
The use of pulse shaping to control transmitted spectral density precisely is examined. A digital filter architecture is described that not only mitigates the traditional problems of lengthy development intervals and cost manufacturing methods, but offers the additional features of intrinsically coding high-speed binary (M=2) data into M-ary symbols while ensuring highly reproducible, baud-normalized, transmitter pulse shaping. A conceptual basis for the digital synthesis method is first described, including a functional circuit appropriate to the simplest filter realizations. Spectral effects internal to the filter are considered, and a simple method to obtain desired transmitted spectra is outlined. It is shown that even relatively short pulses used in high-level modulation systems lead to impractical memory storage demands; however, the simple expedient of segmenting the finite impulse function greatly reduced the individual memory requirements, though it necessitates intermediate adding operations. Experimental examples illustrate the design methodology for quaternary (M=4) data signals in a Nyquist communication channel and serve as points of reference for addressing performance and design flexibility  相似文献   

19.
The multilevel coding technique is used for constructing multilevel trellis M-ary phase-shift-keying (MPSK) modulation codes for the Rayleigh fading channel. In the construction of a code, all the factors which affect the code performance and its decoding complexity are considered. The error performance of some of these codes based on both one-stage optimum decoding and multistage suboptimum decoding has been simulated. The simulation results show that these codes achieve good error performance with small decoding complexity  相似文献   

20.
A method for the integration of the modulation operation in an automatic-repeat-request (ARQ) scheme is described. This method uses a memory for the successive transmissions of a codeword and, through a suitable encoding operation, the Euclidean distances among the codewords are significantly increased with the number of transmissions. The application of the described method to some different modulation schemes, such as M-ary PSK with M>2 and continuous-phase frequency shift keying modulation, is described. The optimum combination of the modulation and channel coding operations for some short block codes is also presented. The results of the theoretical analysis show that the method described permits improving both the error probability and the throughput of an ARQ protocol with respect to similar schemes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号