首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
无机纳米粒子复合乳液的研究进展   总被引:1,自引:0,他引:1  
对纳米S iO2复合乳液的合成制备作了详细的综述,介绍了共混法、插层法、溶胶-凝胶法和原位分散聚合法,概述了纳米S iO2对复合材料性能的影响及其特性和发展。  相似文献   

2.
纳米Si02改性丙烯酸酯乳液的工艺研究   总被引:2,自引:0,他引:2  
采用水溶性环氧树脂对纳米SiO2进行化学改性,有效改善了纳米SiO2的表面性能。通过原位聚合法和共混法制备纳米SiO2/聚丙烯酸酯复合乳液,发现纳米SiO2的加入明显改善了涂膜的硬度、附着力、拉伸强度和耐候性,原位聚合法制备的复合乳液综合性能优于共混法。  相似文献   

3.
PUA离聚物的纳米SiO2复合乳液制备与性能   总被引:1,自引:0,他引:1  
用共混法和原位聚合法制备了PUA离聚物的纳米SiO2复合乳液,激光粒度分布仪检测表明SiO2在复合乳液中呈现纳米尺寸分布,对乳液的稳定性、粘度与涂膜的光学性能、机械性能等进行了表征。结果证明纳米SiO2的加入能显著改善涂膜的紫外光吸收性能、热学性能及机械性能。  相似文献   

4.
李伟 《辽宁化工》2023,(12):1826-1829
纳米SiO2改性丙烯酸酯涂料可以改进涂层的光学性能、防腐蚀性能、机械性能等。纳米SiO2与丙烯酸酯乳液有不同的聚合方法,所得产品性能也不同。综述了共混法、溶胶-凝胶法、原位聚合法在制备纳米SiO2/丙烯酸酯乳液中的应用,以及三种复合乳液制备方法对涂料性能的影响。  相似文献   

5.
核壳型纳米SiO2-聚丙烯酸酯复合乳液的制备及应用   总被引:5,自引:0,他引:5  
本文根据核壳乳液聚合理论,以硅烷偶联剂表面处理的纳米S iO2为种子,采用优化的乳液聚合工艺,制备核壳型纳米S iO2-聚丙烯酸酯复合乳液,并以其为基料制备建筑涂料。实验结果表明,纳米S iO2经硅烷偶联剂表面处理后,提高了其在聚合体系中的分散稳定性和与聚合物的相容性。所制备的复合乳液粒子具有核壳结构,以其为基料制备的建筑涂料的耐沾污性、耐洗刷性和耐候性等性能大大高于国家标准中优等品的水平。  相似文献   

6.
丙烯酸酯/纳米SiO2复合乳液的制备和表征   总被引:25,自引:0,他引:25  
通过原位聚合、高速剪切法分散共混和球磨法分散共混等三种方法制备丙烯酸酯/纳米SiO2复合乳液,以相同的方法制备丙烯酸酯/微米SiO2复合乳液,并利用电子拉力机(Instron)、动力学粘弹谱(DMA)、紫外可见光分光光度计(UV-VIS)和透射电子显微镜(TEM)考察了复合物的各种力学和光学性能。结果发现,共混法制得的纳米复合物的拉抻强度、断裂伸长度和玻璃化转变温度(Tg)随纳米二氧化硅含量的增加先上升然后逐渐下降,而通过原位聚合制得的纳米复合物的这些性能均低于未加纳米SiO2的丙烯酸酯。涂层对紫外光的吸收和透过随纳米SiO2含量的增加分别呈上升和下降趋势,而微米SiO2复合的丙烯酸酯乳液,其涂层对紫外光的吸收和透过率基本保持不变。  相似文献   

7.
改性纳米SiO_2/聚氨酯复合乳液的研究   总被引:2,自引:1,他引:1  
通过原位聚合或直接共混合成了由吐温-80改性的纳米SiO2与聚氨酯的复合乳液,并用粒度分析、UV-Vis和DSC等技术进行了表征.结果表明:原位聚合法制得的复合乳液涂膜的性能提升比直接共混明显,加入适量通过吐温-80改性的SiO2纳米粒子可以使制备的水性聚氨酯分散体粒径分布均匀,稳定性好,而且能够同时增加涂膜的拉伸强度、断裂伸长率以及耐候性.  相似文献   

8.
纳米SiO2复合涂料的合成研究进展   总被引:1,自引:0,他引:1  
本文对纳米SiO2复合涂料的合成制备做了详细的综述,主要介绍了共混法、原位聚合法、溶胶-凝胶法、微乳液法、辐射合成法等,重点介绍了应用较为广泛的溶胶-凝胶法,并概述了纳米SiO2对涂料性能的影响及其特性和发展。  相似文献   

9.
通过原位聚合法和共混法制备了系列不同含量氧化亚铜(Cu_2O)的PET/Cu_2O纳米复合树脂。采用红外光谱、扫描电子显微镜表征了Cu_2O的结构与尺寸,利用扫描电子显微镜、热重分析仪、差示扫描量热仪、X射线衍射仪、复丝强力仪等分别评价了纳米Cu_2O在复合纤维中的分散性以及复合纤维的热力学性能、结晶性能及力学性能。研究表明:相对于共混法复合纤维表面的纳米粒子团聚现象,原位聚合法制备的复合纤维的表面纳米Cu_2O分布均匀;原位聚合法制备的复合纤维的断裂强度比共混法提高了47%~72%。抗菌性测试发现:当纳米Cu_2O质量分数为0.2%时,复合纤维抗菌率可达到99.73%。  相似文献   

10.
潘红霞  肖明宇  陈大俊 《化工进展》2006,25(9):1064-1068
介绍了近年来国内外聚氨酯/丙烯酸酯复合乳液制备方法:物理共混、种子乳液聚合法、原位聚合法等;评述了聚氨酯的结构、聚丙烯酸酯、引发剂以及制备方法等因素对复合乳液性能的影响;对目前常用的无机纳米粒子和交联等对聚氨酯/丙烯酸酯复合乳液改性方法进行了讨论;展望了该领域的发展趋势。  相似文献   

11.
采用原位乳液聚合法将未经表面处理的纳米SiO2引入到聚丙烯酸酯乳液,考察了纳米SiO2的引入方式、乳化剂在预乳液与釜底的分配、种子乳液的来源等对其分散性的影响。TEM及粒径分析表明,纳米SiO2能有效地被分散成为初次粒子并以纳米量级与原位生成的聚丙烯酸酯复合,纳米SiO2因界面作用被吸附嵌入到乳胶粒子的表面,使粒子具有“草莓”般的形貌。  相似文献   

12.
纳米SiO2/聚丙烯酸酯(PA) 复合乳液的制备   总被引:2,自引:0,他引:2  
通过原位聚合制备了纳米SiO2/聚丙烯酸酯复合乳液,SiO2在乳液中的粒径分布在100nm以内,并对添加了SiO2的聚丙烯酸酯胶膜进行了红外表征。结果发现添加纳米SiO2后,可以显著改善聚丙烯酸酯胶膜的耐热分解性能和抗短波紫外性能。  相似文献   

13.
通过种子乳液聚合方法,采用丙烯酸丁酯(BA)、丙烯酸2-乙基己酯(EHA)为核层单体,与少量有机锡单体共聚制备了含有机锡的P(BA-EHA)胶乳,与氯乙烯(VC)乳液接枝共聚合成了P(BA-EHA)/PVC复合改性剂。通过透射电子显微镜(TEM)、动态力学分析仪(DMA)、扫描电子显微镜(SEM)等测试手段,考察了复合乳胶粒子和共混材料的形态结构、复合改性剂中有机锡含量对其共混改性PVC材料的力学性能及复合粒子热稳定性的影响。DMA和TEM分析结果表明:复合粒子的加入显著改善了橡胶相与PVC之间的相容性,P(BA-EHA)在PVC基体中具有很好的分散性和均匀度,SEM照片显示共混材料缺口断面表现为优异的基体屈服型断裂韧性。  相似文献   

14.
通过熔融共混法制备了聚丙烯(PP)/纳米二氧化硅(nano-SiO2)复合材料.研究了nano-SiO2用量和第三组分聚丙烯接枝马来酸酐(PP-g-MAH)对材料力学性能和流动性能的影响.实验结果表明:当nano-SiO2用量为4份时,材料的力学性能最佳.对PP、PP/nano-SiO2、PP/nano-SiO2/PP-g-MAH复合材料进行DSC热分析和SEM照片观察发现:nano-SiO2对PP基体有异相成核作用,PP-g-MAH可以提高nano-SiO2在PP基体中的相容性.  相似文献   

15.
采用原位聚合法制备PMMA/P(BA-St)/PMMA三层韧性有机玻璃复合树脂,分子设计方法的使用,保持了材料的透明性。考察了韧性粒子粒径、橡胶相组成以及橡胶含量对材料力学和光学性能的影响。借助透射电镜、扫描电镜和动态光散射方法对复合胶乳粒子以及所制材料的形态结构进行了表征。结果表明:橡胶相的折光指数对材料的透光率有明显影响,橡胶相玻璃化温度越低,越有利于增韧。  相似文献   

16.
纳米SiO2复合水性苯丙乳液的制备及聚合动力学研究   总被引:1,自引:0,他引:1  
本文用原位聚合法制备了纳米SiO2/苯乙烯-丙烯酸酯复合乳液,研究了不同SiO2含量、反应温度等对聚合反应稳定性的影响,用消光法测定了所得乳胶粒的粒径,分析了在溶液和凝聚物中SiO2含量,并进行了在SiO2存在下乳液聚合反应的动力学研究。  相似文献   

17.
以丙烯酸六氟丁酯(HFBM)为功能性单体,有机蒙脱土为改性剂,甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)和丙烯酸(AA)为主要单体,采用乳液聚合法合成了含氟丙烯酸酯/有机蒙脱土(PFA/OMMT)复合乳液,并用环氧树脂乳液对其进行共混改性,探讨了环氧树脂的环氧值和用量对共混乳液所成漆膜性能的影响.结果表明:环氧值越小...  相似文献   

18.
聚醋酸乙烯酯/纳米SiO_2复合乳液的制备与性能   总被引:7,自引:0,他引:7  
采用原位乳液聚合法制备了聚醋酸乙烯酯/纳米二氧化硅复合乳液。考察了纳米二氧化硅在聚醋 酸乙烯酯乳液内及乳胶膜中的分散性:纳米二氧化硅用量对复合乳液性能的影响。结果表明:与普通乳液相 比,复合乳液的干态粘接强度和耐水性明显提高。  相似文献   

19.
通过熔融共混的方法制备PA66/POE-g-MAH/纳米SiO_2三元共混体系,研究纳米SiO_2、POE-g-MAH对PA66力学性能的影响.研究结果表明:POE-g-MAH与纳米SiO_2对PA66有协同增韧效应,当PA66/POE-g-MAH/纳米SiO_2配比为100/30/0.1时,复合体系的缺口冲击强度达到最大,为纯PA66的10.9倍,为PA66/POE-g-MAH(100/30)二元体系的1.8倍;低温缺口冲击强度也达到最大,为纯PA66的6.3倍.用扫描电镜观察分析冲击断口形态.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号