首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Ozone consumption by water can be characterized by the instantaneous ozone demand (IOD) and a pseudo first order decay constant. Utilizing the flow injection analytical system for measuring IOD, the instantaneous ozone demand characteristics of two river waters (Korea) were investigated, utilizing a ?OH probe compound and ?OH scavenger, and were compared with those of two commercial humic acids (the Suwannee River humic acid and Aldrich humic acid). The major findings were as follows; (1) The IOD in river waters was found to be mainly due to the reaction of the ozone with natural organic matter (NOM), which constituted approximately 0.26–0.29?mg/mg DOC, and was responsible for the consumption of more than 40% of the applied ozone. Whereas, the IOD of the two commercial humic acids were three times more than those of the river waters. (2) The IOD in the river waters was mainly caused by the direct ozone reaction with dissolved organics, not from the ?OH mediated ozone reaction. However, for the two commercial humic acids, more than 40% of the IOD came from the ?OH mediated ozone reaction. (3) The hydrophobic fractions of the dissolved organics in the river waters were mainly responsible for the IOD. The IOD of the hydrophobic organics was approximately ten times larger than that of the hydrophilic organics. Although the exact magnitude of the IOD, and the relative importance of the direct/indirect ozone reaction with river water may vary greatly depending upon the source of the NOM, the characteristics of the IOD compromise a significant fraction of the ozone dose need (especially in achieving good ozone disinfection) in water treatment plants.  相似文献   

2.
3.
The modified Staehelin, Buhler, and Hoigné model for aqueous ozone decomposition was tested over a wide range of hydroxyl radical scavenger concentrations at a pH of 7.1–7.2. Results from these experiments showed that the modified model appeared to underpredict the residual ozone concentration and overpredict the residual hydroxyl radical probe compound, tetrachloroethylene, concentration. The modified Staehelin, Buhler, and Hoigné model was recalibrated and two rate constants, the rate constant of the initiation reaction of ozone decomposition of hydroxide ion and the rate constant of the promotion reaction of ozone decomposition by hydroxyl radical, were reestimated. The new estimates of these rate constants are 1.8 × 102 M?1s?1 (initiation reaction) and 2 × 108 M?1s?1 (promotion reaction), while the values estimated by Staehelin, Buhler, and Hoigné for these rate constants are 70 M?1s?1 (initiation reaction) and 2 × 109 M?1s?1 (promotion reaction). The recalibrated-modified model was tested and validated by conducting experiments at different pH values and hydroxyl radical scavenger concentrations. Also, the effect of phosphate buffer as a hydroxyl radical scavenger was investigated at phosphate buffer concentrations of 10 mM and 1 mM.  相似文献   

4.
5.
This article presents a full-scale modeling study of an industrial ozonation unit for practical application. The modeling framework combines an integrated hydraulic model (systematic network) with a quasi-mechanistic chemical model. Dealing with natural water, the chemical model has to be parameterized, and the parameters calibrated. This was done based on lab-scale experiments. The calibration results showed that the chemical model is able to account for changes in contact time with ozone, pH, temperature, ozone dose, NOM concentration, bromide concentration. Comparison of residence time distributions showed that the hydraulic model accurately reproduces flow conditions. Six sampling points were installed along an industrial ozonation unit of 487 m3 consisting of two baffled tanks in series. Bromate and ozone concentrations were monitored under varying operational process conditions. After the selection of a value for the kLa, simulations were run. Using the lab-scale calibrated models, simulated and experimental data were found in close agreement: 84% of the simulated concentrations for ozone matched measurements (±experimental error), 60 % for bromate. A readjustment of the kinetics of a single reaction (out of 65) showed that seasonal changes in NOM activity may easily be taken into account based on regular concentration measurements (90% of the bromate concentrations were then modeled accurately).  相似文献   

6.
The kinetics of heterogeneous catalytic ozone decomposition in aqueous solution over composite iron-manganese silicate oxide (FMSO) was investigated. Results showed that the presence of FMSO significantly accelerated the ozone decomposition rate from 0.022 (without FMSO) to 0.101 min?1. The effects of inorganic anions and solution pH indicated that surface hydroxyl groups on FMSO were the active sites for catalyzing ozone decomposition and neutral charge surface seemed to show the highest catalytic performance. Tert-butanol inhibition experiments demonstrated that FMSO effectively accelerated the transformation rate of ozone into hydroxyl radicals. The contribution of hydroxyl radicals on ozone decomposition with and without FMSO was subsequently determined.  相似文献   

7.
8.
The impact of wastewater derived effluent organic matter (EfOM) on the decomposition of ozone and formation of hydroxyl radicals (HO) was evaluated for four wastewaters (sites A, B, C1 and C2). The reactivity of EfOM was assessed by fractionation into four apparent molecular weight (AMW) fractions (<10 kDa, <5 kDa, <3 kDa, and <1 kDa). The RCT, defined as the ratio of HO exposure to ozone exposure (∫HOdt?/?∫O3dt), was measured for all fractions and bulk waters (at times greater than 5 seconds), with an initial ozone dose equal to the total carbon concentration of EfOM (ozone:DOC ratio of 1). The RCT of all the samples and ozone first-order decay rates of two of the waters increased significantly (95% confidence) from the bulk sample to the <10 kDa fraction, and decreased with AMW. This indicates that the intrinsic capacity of different molecular weight fractions of the EfOM have different reactivity with ozone.  相似文献   

9.
10.
A unified model for the kinetics of O3 and ?OH with NOM was proposed, calibrated and validated based on large experimental data sets. Single-phase batch experiments were done on 11 water samples from seven resources. Seasonal variations were studied on three resources. Effects of reaction time with ozone, ozone dose, pH, temperature, radical scavenger adding, and NOM dilution were studied. The experiments represented more than 1200 and 900 concentration measurements, respectively, for ozone and pCBA (?OH tracer). Mechanistic models were used for ozone self-decomposition and carbonate species kinetics. Results showed that the proposed model is robust and can handle different water characteristics and different experimental conditions: 75% of the experiments were modeled satisfactorily (for ozone and pCBA). Next, the domain of validity was determined: 6 ≤ pH ≤ 8; 1 meq.L?1 ≤ alkalinity ≤ 6 meq.L?1; 0–0.5 mgC.L?1 ≤ TOC ≤ 3.1 mgC.L?1. Only water samples with high organic (TOC > 2.4 mg.L?1) and low inorganic contents (alkalinity < 0.3 meq.L?1) could not be modeled adequately. Seasonal comparisons showed that the quality of the predictions decreases only for pCBA when having calibrated the model at another season. The model gave good results when using only 6 single batch experiments for calibration.  相似文献   

11.
A laboratory study has been designed to investigate the decomposition of ozone in natural water and to determine its potential to produce hydroxyl free radicals for the oxidation of micropollutants during the ozonation process of drinking water. This report describes the first data obtained using a continuous flow reactor capable of observing reactions with relatively short time scales (Q = 34 mL/min; 1.4 < tc < 27 sec). Rates of ozone decay were studied in fulvic acid solution in the presence, or in the absence of radical scavenger (tert-butyl alcohol) or of promoter of ozone decomposition (formic acid), and a micropollutant of interest (tetrachloroethylene). Also, three natural waters were studied, illustrating that OH radical formation depends on chemical composition of the waters.  相似文献   

12.
Ozone decomposition in water in the presence of an activated carbon has been studied. Variables investigated were agitation speed, carbon particle size, temperature and pH. In all cases, the presence of activated carbon improved the ozone decomposition rate. Between pH 2 and 7 the ozone decomposition rate due to both the homogeneous and heterogeneous mechanisms hardly varied while a significant increase was noticed with increasing pH. A kinetic study based on a Langmuir-Hinselwood type mechanism for the heterogeneous surface reaction was undertaken. According to this mechanism the heterogeneous ozone decomposition kinetics can be simplified to follow a first order process. Fit of experimental results to the kinetic equations derived from the mechanism allowed for the determination of the apparent first order rate constants of the ozone surface heterogeneous reaction and adsorption equilibrium constants.  相似文献   

13.
Ozone decomposition kinetics are investigated together with the influence of energy input to an ozone generator. Decomposition is considered in a solid bed reactor, a gas phase reactor and a bubbling reactor. Ozone is produced at the same concentration and gas flow rate using two methods: 1) from the generator at a higher power giving higher ozone concentration, then ozone is diluted by oxygen before entering the decomposition reactor, and 2) at a lower power without dilution.  相似文献   

14.
Ozonation of benzaldehyde in its aqueous solutions based on mechanistic approach and incorporating ozone decomposition model is presented in this work. As the basis the modified and extended HSB model of ozone decomposition with phosphates and carbonates reactions included has been applied. It was then tuned with the literature data and the results of our own measurements on ozone decay in aqueous solutions. The model was extended to model benzaldehyde oxidation reactions in the aqueous solutions. Model predictions compare favorably against experimental data obtained in the range of pH 2.3 to 8 with or without radical scavenger (t-butanol).  相似文献   

15.
The focus of this work was to determine the effect of ozone on the removal of dissolved organic matter (DOM) from a secondary effluent and its relation with the permeated flux behavior in an ultrafiltration membrane. To assess the ozone action, the DOM of the secondary effluent was fractionated into its hydrophobic, transphilic and hydrophilic fractions, using XAD-8 and XAD-4 resins. Ozone increased the hydrophilic fraction from 32% to 42%, and this percentage remained unchanged after ultrafiltration of the secondary effluent. Permeate flux dropped to 52% in the first hour of membrane operation, but when ozone was applied as a pretreatment, it could be maintained at 84% within the first hour.  相似文献   

16.
The oxidations of natural organic matter (NOM) and a model compound (p-chlorobenzoic acid) were characterized using ozonation and catalytic ozonation processes. In general, the catalytic ozonation showed better performance in the removal of organics tested in the study. The hydrophobic, transphilic, and hydrophilic NOM fractions were isolated using XAD-8 and -4 resins to evaluate the reaction characteristics. The catalytic ozonation in the presence of goethite accomplished the higher removal of NOM with simultaneous reduction of the three fractions than the ozonation which removed the hydrophobic portion only. The analysis of discrete size distributions of NOM revealed that ozonation yielded a removal of >1,000MW and an increase of <1,000MW, whereas all molecular weight fractions reduced after catalytic ozonation. The concentrations of model compound and aqueous and gaseous ozone were monitored during the oxidations, and efficiencies were compared for cases in the absence and presence of iron oxide (FeOOH).  相似文献   

17.
It was demonstrated that, in natural waters, the overall kineticsof dissolved ozone consumption can be characterized by the “specific ozone utilization rate”, w[time ?1]. The dependency of w on the chemical quality of the raw water was analyzed. And, the variation of w values measured in different water samples was explained in terms of the pH, alkalinity, and total organic carbon content of the solution matrix.  相似文献   

18.
Natural organic matter (NOM) can simultaneously act as the initiator, promoter and inhibitor in water ozonation. This study presents an explicit method that can be used to determine these rate constants via the integration of the transient steady-state hydroxyl radical (?OH) model, the Rct concept and the pseudo first-order ozone decomposition model. The theoretical background of this method was provided, and the method was validated with model compounds. The rate constants of three NOM isolates were determined using the developed method. With these rate constants, the influences of NOM on the degradation of ibuprofen, an ?OH-reactive pharmaceutical compound, can be quantitatively described. [Supplementary materials are available for this article. Go to the publisher's online edition of Ozone Science &; Engineering for the following free supplemental resources: tables, figures, and equations.]  相似文献   

19.
Ozone decomposition in aqueous solution was studied by the stopped - flow method over the pH 10.4 - 13.2 range at 25 ± 0.1 °C and I = 0.5 M NaClO4. At 260 nm the molar absorptivity of aqueous ozone was determined to be 3135 ± 22 M?1cm?1. It was shown that various experimental factors may significantly alter the course of the reaction. Even small amounts of H2O2 absorbed by the plastic parts of the stopped-flow instrumént can affect the kinetic features of the reaction for an extended period of time. Under strictly controlled experimental conditions sufficiently reproducible data could be obtained for the decomposition. The data were evaluated by comparing experimental and simulated kinetic traces. A detailed kinetic model was developed which is able to predict the decay and life-time of ozone as well as the formation and decomposition of the ozonide ion radical (O3 ?) over the pH 10.4 - 13.2 range.  相似文献   

20.
In aqueous solutions molecular ozone (O3) decomposes rapidly into secondary radical or ionic species such as (OHo,, , …). This decomposition is enhanced by many factors, essentially the pH, the temperature, and the organic or inorganic compounds in the solution. The aim of this work is to study the effect of the addition of granular activated carbon on the rate of ozone decomposition in aqueous solutions containing promoter (P) and inhibitor (Q) mixtures. The activated carbon used is laboratory produced from olive stones. We found that the rate of decomposition of ozone in these conditions is described by a pseudo-first-order kinetic: . Experimental results show that adding 15 mg/L of the olive stones activated carbon (OSAC) enhances the rate constant of the P and Q controlled chain depletion by about a factor of two. We found that the decomposition increases linearly with the solid concentration (W): and that the kinetics are enhanced when the activated carbon specific area increases. We also conclude that the preozonation of the OSAC has no effect on its activity. We note that the temperature has a significant effect on the ozone decomposition rate even in the presence of OSAC. The value of the activation energy in the presence of the OSAC is lower than that obtained in homogeneous decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号