首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
This article deals with the oxidation effect of ozone on the increasing fraction of biodegradable organic matter with the “ozotest” method, a laboratory technique which simulates the effect of ozonation and allows a complete oxidation assessment. Ozone treatment was performed on river water samples and sand filter effluent samples. Ozone consumption, reduction of UV absorbance and BDOC formation were monitored with applied ozone doses from 0 to 10 mg/L and with contact times from 0 to 60 min. The BDOC formation was optimum at an applied ozone dose of 0.25-0.5 mg O3 per mg DOC (contact time = 5 min) corresponding to apparition of traces of residual ozone and maximum UV reduction. Maximum ozone consumption, UV reduction and BDOC formation occurred simultaneously during the first two minutes of treatment. Concerning BDOC formation, applied ozone dose showed a greater effectiveness than contact time. For the same quantity of consumed ozone, a short contact time associated with a high ozone dose was preferable to a long contact time and a low ozone dose.  相似文献   

2.
The effects of ozone and ozone/hydrogen peroxide on BDOC formation were studied with the “Ozotest” method, a laboratory technique that permits the assessment of oxidation efficiency. Oxidation treatments were performed on river water and sand filter effluent samples. Ozone consumption, reduction of UV absorbance, and BDOC formation were monitored during the experiments. The ratio of 0.35-0.45 mg H2O2 per mg O3 used to degrade pesticides also was optimal for the oxidation of organic matter. BDOC formation versus ozone dose curves with ozone alone or ozone/peroxide system were similar. BDOC formation was optimum at an applied ozone dose of 0.5-1 mg O3/mg C (contact time = 10 min). The ozone/peroxide system yielded lower BDOC values than ozone alone, a phenomenon related to differences in byproducts generated by the two oxidative systems. Moreover, reduction of the concentration of DOC was higher with ozone/hydrogen peroxide than with ozone alone. For both oxidant systems, BDOC formation occurred during the first minute of treatment.  相似文献   

3.
The dissolved organic carbon (DOC) properties for the influent of the BAC pilot plant have shown a 42% biodegradable fraction and a 58% non-biodegradable fraction. The biodegradable dissolved organic carbon (BDOC) was degraded entirely by biodegradation; the removal efficiency was 65–83%. The BDOC removal efficiency at empty bed contact time (EBCT) 15 minutes was larger than at EBCT 8 minutes. At increasing EBCT, a more slowly biodegradable fraction of BDOC (H2) was utilized. The non-biodegradable dissolved organic carbon (NBDOC) was removed mostly by adsorption, and the removal amount was 24–58%. Therefore, the DOC was removed by adsorption and biodegradation; the removal efficiency by biodegradation was 31%, and that by adsorption was 24%. The breakthrough behaviors of DOC and NBDOC continued to be saturated as the bed volume increased, whereas the BDOC breakthrough curves maintained a certain ratio according to the bed volume.  相似文献   

4.
The impacts of ozone dose in the formation of biodegradable dissolved organic carbon (BDOC) were studied at the North Bay Regional Water Treatment Plant (NBR). Increasing the ozone to total organic carbon ratio to 0.45 (mg/mg) resulted in the formation of BDOC. Sedimentation and filtration/adsorption were effective in removing BDOC to non-measurable levels prior to the water entering the distribution system. Data from an on-going distribution system monitoring program indicate no discernible adverse impacts on microbiological parameters from using ozone during water treatment. Heterotrophic plate count (HPC) levels were similar before and after the use of ozone. Maintaining chlorine residual levels above 0.3 mg/L appears to be important for controlling HPC levels.  相似文献   

5.
The combination of ozonation with UV irradiation can remove Tropaeolin O (AO6) and its by-products effectively and completely. The ozone dose affects the rate of decolorization, AO6 species removal, and dissolved organic carbon (DOC) reduction significantly. After 240 minutes of ozonation, the average DOC removal efficiency (ηDOC) for O3 alone was about 0.79, while ηDOC for O3/UV was 1.0. The average DOC removal rate was low at early stage of ozonation due to decolorization and low DOC. At later stage of ozonation, average DOC removal rate decreases because of the formation of persistent intermediates. The ozone consumption was consistent with ηDOC. The ratio of ozone consumption to ozone applied decreased from 14 to 12% when ηDOC < 40% because the decolorization in the early stage of the ozonation of AO6 may consume a relatively large amount of ozone. It was found that NO2, NO, CO2, and small amount of SO2 was detected in the off-gas. The effective concentration (EC50) increased from 23.48% to 100%, suggesting that the toxic reduction was achieved, and O3/UV system was superior to O3 alone system  相似文献   

6.
The aim of this work was to determine the effect of ozone on dissolved organic matter (DOM) during wastewater coagulation using alum. Adding ozone to the coagulation treatment (O3ECT) enhanced the quality of the final effluent in comparison to conventional coagulation treatment (CT). Final effluents were analyzed by Fourier transform infrared Spectroscopy (FTIR) and UV-Vis spectroscopy. The hydrophilic polar fraction was separated from the hydrophobic fraction using fractionation resins XAD-8 and XAD-4. Wastewater hydrophilic DOM was characterized by molecular weight distribution (MWD), and, BOD5, TOC and DOC parameters. Results show that FTIR spectra for both effluents were very similar in the frequency range 7000 to 1400 cm?1; however, some differences occurred in the O3ECT effluent in the range 1100 to 700 cm?1, which indicated that amines and aromatics groups were affected. In the same way, the UV-Vis spectra showed that there was an increase in absorbance within the wavelength range 285 to 300 nm for the O3ECT effluent (when compared with CT) while the absorbance decreased in the range 210 to 455 nm, particularly at 380 nm. With regards to the hydrophilic polar compounds of DOM, the most abundant fraction in raw wastewater was found in the 3–10 kDa range. After CT, the effluents fraction concentrations decreased in all cases, but for O3ECT the 10–30 kDa range exhibited a marked increase while the smaller (<3 kDa, 3–10 kDa) and larger fractions (>30 kDa) decreased. The ozone application during coagulation slightly increased TOC and DOC percentage removals, 84.4% to 89.1% and 80% to 82.5%, respectively. This suggests that the small dose of ozone transferred (1.47 mg/L) caused only minor changes in DOM. Finally, the O3ECT effluent exhibits 10 mg/L more of biological oxygen demand (BOD5) than a single CT.  相似文献   

7.
An ozonation-biological filtration pilot-scale study was performed to evaluate the formation and removal of biodegradable ozonation by-products. The formation of aldehydes and ketoacids was found to be proportional to the DOC concentration and ozone dosage, and a strong relationship between the formation of aldehydes, ketoacids, and biodegradable dissolved organic carbon (BDOC) was observed. Four types of granular activated carbon (GAC) and one nonadsorbing medium, biolite, were employed to evaluate the performance of biofiltration for removing ozonation by-products. It was observed that GAC filters developed biological activity sooner than the biolite filter. Once developed, biofilters, either GACs or biolite, were particularly effective in the removal of aldehydes, ketoacids and BDOC.  相似文献   

8.
Four different sources of humic substances were studied to determine the effects of ozonation on molecular weight-distributions, based on dissolved organic carbon (DOC) and trihalomethane formation potential (THMFP). Solutions of two soil-derived fulvic acids and a one soil-derived humic acid, as well as dissolved organic matter (DOM) associated with a natural water source were studied. Both gel permeation chromatography (GPC) and ultrafiltration (UF) were employed to define apparent molecular weight (AMW). Applied ozone doses ranged from 2.0 to 2.5 mg O3/mg DOC. Overall samples of untreated and ozonated waters, as well as individual molecular weight fractions, were characterized according to DOC, UV absorbance, and THMFP. Ozonation resulted in a significant disappearance of higher AMW material with a corresponding increase in lower AMW material. Although little overall reduction in DOC concentration was observed, significant overall reductions in UV absorbance and THMFP levels were observed.  相似文献   

9.
The effects of pre-ozonation and subsequent biological treatment process on the decrease in dissolved organic carbon (DOC) and color were investigated in a test-scale plant of 5 m3/d capacity using actual raw wastewater (RW) from a dye works. Ozone dosage rate and contacting time were around 70 mg/L on average and 30 min, respectively. The DOC concentration was gradually decreased from 36.1 to 19.3 mg/L on average through the process and the DOC removal rates were 24.4% after ozonation and 46.5% after subsequent biological treatment. The average color value was rapidly decreased from 1.75 to 0.20 after ozonation, and the color removal rate was 88.6%. The values of adsorbable organic halide formation potential (AOXFP) and trihalomethane formation potential (THMFP) were gradually decreased by each treatment process, indicating the increased safety of the treated water. Slight morphological differences due to decomposition of the predominant bacteria by residual ozone were observed. The DOC removal rate brought about by pre-ozonation was slightly higher than that by the process consisted of biological treatment and post-ozonation, although no obvious difference in the color removal was observed between them.  相似文献   

10.
The transformation of 41 target emerging contaminants in secondary treated municipal wastewater effluent in Canada was examined at pilot-scale, at transferred ozone doses of 2.8 mg/L (0.46 O3/mg DOC) and 4.4 mg/L (0.72 mg O3/mg DOC). In general, transformation efficiencies of CECs either increased or were retained at the higher ozone dose. The higher ozone dose of 0.72 mg O3/mg DOC (Zspec = 0.6 mg O3/mg DOC) was sufficient to transform 21 of the 31 detected CECs by over 80% as well as achieving the disinfection target of < 200 MPN E. coli per 100 mL.  相似文献   

11.
Huangpu River water treatment by microfiltration with ozone pretreatment   总被引:1,自引:0,他引:1  
With the promulgation of more stringent regulations to guarantee the quality of drinking water, low pressure membrane processes are nowadays considered for surface water treatment. But these membranes are sensitive to fouling. In this study ozone is introduced to pretreatment for membrane filtration to get a high quality permeate and improve membrane performance. The organic matter characteristics, such as AMWD of organic matter, hydrophilic/hydrophobic fractions were studied with ozone oxidation. Results show that for Huangpu River water, ozone oxidation offers high percentage of UV absorbance removal than DOC removal. Highest removal of DOC and UV254 of 10% and 71% respectively were observed. The dominant organic matter oxidized by ozone was 2-7.0 kDa in terms of molecule distribution investigation. Ozone oxidizes more hydrophobic fraction to hydrophilic one. Changes of organic matter composition improved membrane flux. There is the optimal dosage with ozone of 1.5 mgO3/L made membrane flux maximum during 0.5-3.0 mgO3/L ozone dosage. Ozone oxidization provided degradation of macromolecule organic matter, which is responsible to membrane fouling, to small molecule organic substance. Study about the chemical cleaning of the fouled membrane also supports the point that membrane fouling is produced by the organic substance with high molecule weight.  相似文献   

12.
We present here some works which take place in the particular framework of the study of drinking water treatment of reservoir waters which contain high concentrations of organics, mainly humic substances. Previous studies on coagulation of fulvic acid solutions have proved that the optimal removal of organic matter was reached at acidic pH with 2 mg of ferricion per mg or organic carbon (summarized in this paper). The main question in this study is to know what is the impact of preozonation on the removal of organics by iron (III) coagulation.

The study of the behavior of organics, in terms of UV-absorbance and TOC measurements was made on three aquatic fulvic acids and on two raw waters. The experiments carried out with fulvic acids showed that preozonation (at 0.5 mg O3/mg C) of fulvic acid appeared to have shifted the region of the optimal DOC removal towards the higher coagulant dose. Furthermore, increasing ozone doses led to a slight decreasing of coagulation efficiency at constant coagulant dose. With two raw waters, preozonation at low ozone doses (0.2 mg 03/mg C) was found to improve very slightly the elimination of organic matter, while high ozone doses (0.9 mg O3/mg C) led to a disturbance of TOC elimination by iron coagulation.  相似文献   


13.
The effects of pre-ozonation and subsequent biological treatment on the decrease in dissolved organic carbon (DOC) and color from dyeing wastewater were investigated. Moreover, the compositions of organic compounds in raw wastewater (RW) and the respective treated waters were estimated, and microscopic observations of the mixed liquor were conducted. The amount of ozone required to remove 1 mg of DOC and the DOC removal rate brought about by pre-ozonation ranged from 6.6 to 13.2 mgO3/mgC and 12 to 15%, respectively. The total amount of DOC removed was increased by the combined use of pre-ozonation and subsequent biological treatment, and pre-ozonation did not necessarily lead to an increase in the amount of DOC removed by biological treatment. However, this combined method was effective in decreasing color and adsorbable organic halide formation potential (AOXFP). The rates of the dyestuff in RW and the respective treated waters were less than 10% of total DOC, and those of the other non-biodegradable compounds were much higher than those of the dyestuff. The morphological difference was observed in the predominant bacteria in RW with and without pre-ozonation.  相似文献   

14.
An example of intermittent disinfection occurs in dental-unit water systems (DUWS), which are disinfected only for a specified time per each day. The efficacy of intermittent ozonation was evaluated using a laboratory-scale, membrane-based ozone disinfection system (MBODS), which delivers bubbleless dissolved ozone to the DUWS. A new tool - the weighted Ct value, or Cw, - was applied to interpret heterotrophic plate counts (HPC) data. To achieve the American Dental Association's (ADA's) criterion (<200 CFU/mL), the required ozone dosage was Cw > 0.07 mg–O3/L. However, even the highest ozone dosage (Cw > 0.130 mg/L) allowed biofilm HPC to persist at over 104 CFU/cm2. Although a higher Cw killed planktonic and biofilm bacteria more thoroughly, it also generated more biodegradable dissolved organic carbon (BDOC). Thus, this research illustrates the inherent trade-off of intermittent ozonation: a higher Cw kills more bacteria during the ozonation period, but creates more BDOC that fosters biofilm regrowth when ozonation is off.  相似文献   

15.
In this study, the impact of ozone concentration (14 and 7mg/L?1 applied for 120min) and pH (10 and 12) on color removal, and reduction of dissolved organic matter (DOC) and total phenol of Kraft E1 effluent was investigated. The degradation kinetics for the all parameters at pH 12 were slower than of those at pH 10. The degradation at pH 10 ceased after approximately 120min, while for the ozonation at pH 12, ozone was still being consumed even after 5h of treatment. When the ozone dose was increased, the removal efficiency increased; however, the DOC removal efficiency continued limited.  相似文献   

16.
Using C.I. Reactive Yellow 3 as the target compound, the effect of the combined use of ozonation and post-biodegradation on the decrease in dissolved organic carbon (DOC) concentration was investigated, and the synergistic effect (the difference in the amounts of DOC removed by the biological process between solutions with and without ozonation) was estimated. A decrease in DOC concentration was observed during ozonation and ΔO3/ΔDOC was decreased from 16.0 to 5.2 with increasing ozonation time. Moreover, an enhancement of biodegradability was shown. A further decrease in DOC concentration was observed during the biodegradation after ozonation. The total amount of DOC removed by the combined method was increased from 73.6 mg at 30 min to 159.9 mg at 4 h. The synergistic effect was in the range of 22.7 to 39.2 mg. BOD5 was a better indicator of the synergistic effect than BOD5/DOC.  相似文献   

17.
Bromate ion formation during ozonation processes in water works is regarded as an issue of great interest because of its potential for carcinogenicity. In this research, genotoxicity of bromate ion was investigated by the umu-test using Salmonella typhimurium TA 1535/pSK1002. The time-course study showed that the umuC gene related to error-prone repair of damaged DNA was induced by bromate ion after 12 hours exposure of the test strain. However, a further study revealed that this induction was inactivated by metabolism with rat liver microsome when bromate ion concentration was less than 0.88 mg BrO3 ?/mg as protein of the S9 fraction. This inactivation was assumed to depend on -SH compounds in liver microsome.  相似文献   

18.
The impact of wastewater derived effluent organic matter (EfOM) on the decomposition of ozone and formation of hydroxyl radicals (HO) was evaluated for four wastewaters (sites A, B, C1 and C2). The reactivity of EfOM was assessed by fractionation into four apparent molecular weight (AMW) fractions (<10 kDa, <5 kDa, <3 kDa, and <1 kDa). The RCT, defined as the ratio of HO exposure to ozone exposure (∫HOdt?/?∫O3dt), was measured for all fractions and bulk waters (at times greater than 5 seconds), with an initial ozone dose equal to the total carbon concentration of EfOM (ozone:DOC ratio of 1). The RCT of all the samples and ozone first-order decay rates of two of the waters increased significantly (95% confidence) from the bulk sample to the <10 kDa fraction, and decreased with AMW. This indicates that the intrinsic capacity of different molecular weight fractions of the EfOM have different reactivity with ozone.  相似文献   

19.
臭氧氧化对可溶性有机物构成的研究   总被引:1,自引:0,他引:1  
实验目的在于对溶解性有机物进行分类及考察,研究臭氧氧化影响四种溶解性有机物:1.可生物降解不可吸附;2.可生物降解可吸附;3.可吸附不可生物降解;4.不可吸附不可生物降解。(NA&BDOC、B&ADOC、NB&ADOC、NRDOC)的因素及趋势。实验结果表明臭氧不能同时去除四种溶解性有机物。而是影响它们所占比例.使可生物降解性有机物增加,可吸附性有机物减少。根据实验结果可优选出后续生物活性炭净水效果的最佳的臭氧投加量和停留时间。实验结果可为工程设计提供有益的参考价值。  相似文献   

20.
The impact of ozonation on the reduction of chlorinated disinfection by-products formation was investigated in 15 full-scale and lab-scale drinking water facilities of Québec (Canada). Total trihalomethanes (TTHM) and the sum of six haloacetic acids (HAA6) were measured after chlorination under uniform formation conditions (UFC). Results showed that before ozonation TTHM and HAA6 average concentrations were 89.4 and 45.3 μg/L, respectively. In full-scale ozonation conditions TTHM-UFC and HAA6-UFC reductions averaged respectively 27 and 32%. After lab-scale ozonation at a O3/C of 1:1, a decrease of only 9% of TTHM was calculated, while for HAA6, reduction was not significantly impacted (30%). For BDOC, average concentrations of 0.13, 0.46, and 0.69 mg C/L were measured before and after and lab-scale ozonation, respectively. Chlorine demand (Cl2D) and immediate ozone demand (IOD) were found to be the most appropriate indicators to evaluate NOM reactivity after ozonation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号