首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A method of constructing bilateral supervisory control over space robots, which ensures the robot’s system functions in the case of large transmission delays of control signals from the ground control center to the local space robot’s control system, is described. The conditions for the stability of manipulating a robot and a sufficiently high level of transparency are found. An original positionforce glove-like interface to control the robot’s manipulation is proposed, which ensures greater transparency of the kinesthetic interaction of the human hand with objects of the external environment than is the case with traditional interfaces in the form of a driving handle.  相似文献   

2.
Quadruped robots working in jungles, mountains or factories should be able to move through challenging scenarios. In this paper, we present a control framework for quadruped robots walking over rough terrain. The planner plans the trajectory of the robot's center of gravity by using the normalized energy stability criterion, which ensures that the robot is in the most stable state. A contact detection algorithm based on the probabilistic contact model is presented, which implements event-based state switching of the quadruped robot legs. And an on-line detection of contact force based on generalized momentum is also showed, which improves the accuracy of proprioceptive force estimation. A controller combining whole body control and virtual model control is proposed to achieve precise trajectory tracking and active compliance with environment interaction. Without any knowledge of the environment, the experiments of the quadruped robot SDUQuad-144 climbs over significant obstacles such as 38 cm high steps and 22.5 cm high stairs are designed to verify the feasibility of the proposed method.  相似文献   

3.
Proposes an impedance control method that can regulate a virtual impedance between a robot manipulator and external objects using visual information. The conventional impedance control method is not useful in some cases where no interaction force between the arm and its environment exists, although it is one of the most effective control methods for manipulators in contact with the environment. Using the proposed method, we can control the manipulator motion based on the virtual impedance before contact with the objects. The validity of the proposed method is verified through computer simulations and experiments using a direct-drive robot  相似文献   

4.
柔性空间机器人振动抑制轨迹规划算法   总被引:6,自引:1,他引:6  
吴立成  孙富春  孙增圻  吴昊 《机器人》2003,25(3):250-254
本文首次提出了一个描述柔性空间机器人振动的可直接计算的激振力指标,进 而提出了柔性空间机器人抑振轨迹规划算法.该算法采用均匀非周期四阶B样条描述机器人 的运动轨迹,B样条的控制点作为优化参数,使用改进的微粒群优化算法,以激振力为性能 指标对轨迹进行优化求解.该方法根据激振力指标而不是待定轨迹的控制结果来判定轨迹的 抑振性能,极大地简化了规划过程.对柔性双臂空间该机器人的抑振轨迹规划仿真,表明优 化轨迹取得了良好的振动抑制效果,证明了算法的有效性.  相似文献   

5.
An optimal robot‐environment interaction is designed by transforming an environment model into an optimal control problem. In the optimal control, the inverse differential Riccati equation is introduced as a fixed‐end‐point closed‐loop optimal control over a specific time interval. Then, the environment model, including interaction force, is formulated in a state equation, and the optimal trajectory is determined by minimizing a cost function. Position control is proposed, and the stability of the closed‐loop system is investigated using the Lyapunov direct method. Finally, theoretical developments are verified through numerical simulation.  相似文献   

6.
This work proposes a sensor-based control system for fully automated object detection and exploration (surface following) with a redundant industrial robot. The control system utilizes both offline and online trajectory planning for reactive interaction with objects of different shapes and color using RGBD vision and proximity/contact sensors feedback where no prior knowledge of the objects is available. The RGB-D sensor is used to collect raw 3D information of the environment. The data is then processed to segment an object of interest in the scene. In order to completely explore the object, a coverage path planning technique is proposed using a dynamic 3D occupancy grid method to generate a primary (offline) trajectory. However, RGB-D sensors are very sensitive to lighting and provide only limited accuracy on the depth measurements. Therefore, the coverage path planning is then further assisted by a real-time adaptive path planning using a fuzzy self-tuning proportional integral derivative (PID) controller. The latter allows the robot to dynamically update the 3D model by a specially designed instrumented compliant wrist and adapt to the surfaces it approaches or touches. A modeswitching scheme is also proposed to efficiently integrate and smoothly switch between the interaction modes under certain conditions. Experimental results using a CRS-F3 manipulator equipped with a custom-built compliant wrist demonstrate the feasibility and performance of the proposed method.   相似文献   

7.
As a key technology of robot grinding, force control has great influence on grinding effects. Based on the traditional impedance control, a position-based force tracking adaptive impedance control strategy is proposed to improve the grinding quality of aeroengine complex curved parts, which considers the stiffness damping environmental interaction model, modifies the reference trajectory by a Lyapunov-based approach to realize the adaptive grinding process. In addition, forgotten Kalman filter based on six-dimensional force sensor is used to denoise the force information and a three-step gravity compensation process including static base value calculation, dynamic zero update and contact force real-time calculation is proposed to obtain the accurate contact force between tool and workpiece in this method. Then, to verify the effectiveness of the proposed method, a simulation experiment which including five different working conditions is conducted in MATLAB, and the experiment studying the deviation between the reference trajectory and the actual position is carried out on the robot grinding system. The results indicate that the position-based force tracking adaptive impedance control strategy can quickly respond to the changes of environmental position, reduce the fluctuation range of contact force in time by modifying the reference trajectory, compensate for the defect of the steady-state error of the traditional impedance control strategy and improve the surface consistency of machined parts.  相似文献   

8.
MSTRbot:一种小型侦察机器人   总被引:1,自引:0,他引:1  
周伟  石为人  李江波  王楷 《机器人》2011,33(5):592-598
设计了一种用于野外侦察和监控的小型两轮机器人——MSTRbot,MSTRbot本体上搭载一个可折叠、2个自由度的小型机械手臂,通过机械手臂的“抓”、“撑”动作来辅助机器人攀越障碍物.MSTRbot奉体为圆柱形,直径55mm,长240 mm,可翻越比自身尺寸大的障碍物.MSTRbot上搭载有微型音视频传感器,通过无线方式...  相似文献   

9.
针对传统煤矸石分拣机械臂控制算法如抓取函数法、基于费拉里法的动态目标抓取算法等依赖于精确的环境模型、且控制过程缺乏自适应性,传统深度确定性策略梯度(DDPG)等智能控制算法存在输出动作过大及稀疏奖励容易被淹没等问题,对传统DDPG算法中的神经网络结构和奖励函数进行了改进,提出了一种适合处理六自由度煤矸石分拣机械臂的基于强化学习的改进DDPG算法。煤矸石进入机械臂工作空间后,改进DDPG算法可根据相应传感器返回的煤矸石位置及机械臂状态进行决策,并向相应运动控制器输出一组关节角状态控制量,根据煤矸石位置及关节角状态控制量控制机械臂运动,使机械臂运动到煤矸石附近,实现煤矸石分拣。仿真实验结果表明:改进DDPG算法相较于传统DDPG算法具有无模型通用性强及在与环境交互中可自适应学习抓取姿态的优势,可率先收敛于探索过程中所遇的最大奖励值,利用改进DDPG算法控制的机械臂所学策略泛化性更好、输出的关节角状态控制量更小、煤矸石分拣效率更高。  相似文献   

10.
针对配电线路维护机器人遥显示和在线作业轨迹规划的应用需要,设计了一套机器人虚拟现实三维仿真系统.通过将机械臂姿态信息实时传输到虚拟现实环境中,实现了作业场景3D遥显示功能;根据机器人带电作业需求,设计了一种基于虚拟现实环境的机械臂轨迹规划运动学仿真软件,可在三维虚拟空间测试机械臂作业路径的可行性,具有直观、安全和高效的...  相似文献   

11.
《Advanced Robotics》2013,27(9):943-959
An adaptive control scheme is proposed for the end-effector trajectory tracking control of free-floating space robots. In order to cope with the nonlinear parameterization problem of the dynamic model of the free-floating space robot system, the system is modeled as an extended robot which is composed of a pseudo-arm representing the base motions and a real robot arm. An on-line estimation of the unknown parameters along with a computed-torque controller is used to track the desired trajectory. The proposed control scheme does not require measurement of the accelerations of the base and the real robot arm. A two-link planar space robot system is simulated to illustrate the validity and effectiveness of the proposed control scheme.  相似文献   

12.
在采用液压挖掘机改造的遥操作机器人双向伺服控制系统中,针对大臂和前臂两个自由度构建力反馈控制算法。以准确地获取从端机器人与环境的作用力,使反馈力能够更好地反映从端工作状况为目的,采用构建干扰力补偿项的方法消除干扰力对反馈力的影响;以机器人转角为输入,以空载时检测到的液压缸作用力为输出,通过径向基函数构建干扰力补偿项,此补偿项可对多种因机器人的机械本体动力学特性产生的干扰力之合力进行补偿。实验证明,在以液压机构为从手的双向力反馈系统中,通过构建干扰力补偿项的方法提高力反馈效果的方法是可行的,采用的带有干扰力  相似文献   

13.
A constrained robot is a mathematical model that describes the interaction between a robot and the environment as the robot moves along a prescribed trajectory. The main difficulty in the control of constrained robots is to ensure zero error for the constraint force in addition to accurate trajectory tracking. This study extends the result of Slotine and Li (1991) to design a simple adaptive controller for constrained robots. The proposed controller achieves both control objectives in the presence of dynamic parameter uncertainty. The overall system is proven to be globally stable in the Lyapunov sense. Simulation results are provided to demonstrate the performance of the proposed method  相似文献   

14.
We proposed a lower extremity exoskeleton for power amplification that perceives intended human motion via humanexoskeleton interaction signals measured by biomedical or mechanical sensors, and estimates human gait trajectories to implement corresponding actions quickly and accurately. In this study, torque sensors mounted on the exoskeleton links are proposed for obtaining physical human-robot interaction (pHRI) torque information directly. A Kalman smoother is adopted for eliminating noise and smoothing the signal data. Simultaneously, the mapping from the pHRI torque to the human gait trajectory is defined. The mapping is derived from the real-time state of the robotic exoskeleton during movement. The walking phase is identified by the threshold approach using ground reaction force. Based on phase identification, the human gait can be estimated by applying the proposed algorithm, and then the gait is regarded as the reference input for the controller. A proportional-integral-derivative control strategy is constructed to drive the robotic exoskeleton to follow the human gait trajectory. Experiments were performed on a human subject who walked on the floor at a natural speed wearing the robotic exoskeleton. Experimental results show the effectiveness of the proposed strategy.  相似文献   

15.
This paper considers the motion control and compliance control problemsfor uncertain rigid-link, flexible-joint manipulators, and presents newadaptive task-space controllers as solutions to these problems. The motioncontrol strategy is simple and computationally efficient, requires littleinformation concerning either the manipulator or actuator/transmissionmodels, and ensures uniform boundedness of all signals and arbitrarilyaccurate task-space trajectory tracking. The proposed compliant motioncontrollers include an adaptive impedance control scheme, which isappropriate for tasks in which the dynamic character of theend-effector/environment interaction must be controlled, and an adaptiveposition/force controller, which is useful for those applications thatrequire independent control of end-effector position and contact force. Thecompliance control strategies retain the simplicity and model independenceof the trajectory tracking scheme upon which they are based, and are shownto ensure uniform boundedness of all signals and arbitrarily accuraterealization of the given compliance control objectives. The capabilities ofthe proposed control strategies are illustrated through computer simulationswith a robot manipulator possessing very flexible joints.  相似文献   

16.
The success of robot assembly tasks depends heavily on its ability to handle the interactions which take place between the parts being assembled. In this paper, a robust motion-control method is presented for robot manipulators performing assembly tasks in the presence of dynamic constraints from the environment. Using variable structure model reaching control concept, the control objectives is first formulated as a performance model in the task space. A dynamic compensator is then introduced to form the switching function such that the sliding-mode matches the desired model. A simple variable structure control law is suggested to force the system to reach and stay on the sliding mode so that the specified model is achieved.The proposed method is applied to control the prismatic joint of a selective compliance assembly robot-arm type robot for the insertion of printed circuit board into an edge connector socket. Various amounts of interaction forces are generated during the operation. Experimental and simulation results demonstrated the performance of the variable structure model reaching control approach. In comparison, it is shown that the popular position controllers such as proportional plus derivative control and proportional plus derivative with model-based feedforward control are not suitable for achieving good trajectory tracking accuracy in assembly tasks which experience potential interaction force.  相似文献   

17.
《Advanced Robotics》2013,27(6):641-661
Compliant manipulation requires the robot to follow a motion trajectory and to exert a force profile while making compliant contact with a dynamic environment. For this purpose, a generalized impedance in the task space consisting of a second-order function relating motion errors and interaction force errors is introduced such that force tracking can be achieved. Using variable structure model reaching control, the generalized impedance is realized in the presence of parametric uncertainties. The proposed control method is applied to a multi-d.o.f. robot for an assembly task of inserting a printed circuit board into an edge connector socket. It is suggested that an assembly strategy which involves a sequence of planned target generalized impedances can enable the task to be executed in a desirable manner. The effectiveness of this approach is illustrated through experiments by comparing the results with those obtained using a model-based control implementation.  相似文献   

18.
This paper studies and implements a real-time robust balance control for a humanoid robot under three environment disturbances which are an external thrust, an inclinable platform, and a see-saw. More precisely to say, the robot with robust control can resist an external thrust, stand on a two-axis inclinable platform, or walk on a see-saw successfully. The main feature of the robot is that it has a waist joint which has three degrees of freedom. With the aids of the proposed fuzzy controllers, the robot can change the posture of the body nimbly by adjusting the waist joint and two ankle joints to strengthen the stabilization capacity. The sensory system of the robot includes eight force sensors and one inertial measurement unit sensor in order to measure the center of pressure and the slant angle of the robot’s body. According to the measured data from the sensors and by imitating human reflex actions, the proposed fuzzy controllers perform real-time balance control for the robot under three environment disturbances. According to the experiment results, the stability of the robot is increased at least 32.2 and 61.7% under the first two environment disturbances, respectively. In addition, the robot walking on a see-saw has a success rate of about 95%.  相似文献   

19.
Robotic sanding system for new designed furniture with free-formed surface   总被引:2,自引:0,他引:2  
In this paper, a sanding system based on an industrial robot with a surface following controller is proposed for the sanding process of wooden materials constructing furniture. Handy air-driven tools can be easily attached to the tip of the robot arm via a compact force sensor. The robotic sanding system is called the 3D robot sander. The robot sander has two novel features. One is that the polishing force acting between the tool and wooden workpiece is delicately controlled to track a desired value, e.g., 2 kgf. The polishing force is defined as the resultant force of the contact force and kinetic friction force. The other is that no complicated teaching operation is required to obtain a desired trajectory of the tool. Cutter location (CL) data, which are tool paths generated by a CAD/CAM system, are directly used for the basic trajectory of the handy tool attached to the robot arm. The robot sander can be applied to the sanding task of free-formed curved surface with which conventional sanding machines have not been able to cope. The effectiveness and promise are shown and discussed through a few experiments.  相似文献   

20.
This study is devoted to sensorless adaptive force/position control of robot manipulators using a position-based adaptive force estimator (AFE) and a force-based adaptive environment compliance estimator. Unlike the other sensorless method in force control that uses disturbance observer and needs an accurate model of the manipulator, in this method, the unknown parameters of the robot can be estimated along with the force control. Even more, the environment compliance can be estimated simultaneously to achieve tracking force control. In fact, this study deals with three challenging problems: No force sensor is used, environment stiffness is unknown, and some parametric uncertainties exist in the robot model. A theorem offers control laws and updating laws for two control loops. In the inner loop, AFE estimates the exerted force, and then, the force control law in the outer loop modifies the desired trajectory of the manipulator for the adaptive tracking loop. Besides, an updating law updates the estimated compliance to provide an accurate tracking force control. Some experimental results of a PHANToM Premium robot are provided to validate the proposed scheme. In addition, some simulations are presented that verify the performance of the controller for different situations in interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号