首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The infrared-optical properties of ceramics are correlated with the complex index of refraction of the material and the structure of the ceramic. By changing these parameters, the infrared-optical properties can be changed over a relatively wide range. The correlation of the structural properties (like the porosity or the pore sizes) and the material properties (such as the complex index of refraction on the one hand and the infrared-optical properties such as emittance on the other) are described by a solution of the equation of radiative transfer and the Mie-theory. Within this work, low-emitting ceramics, which have significantly lower emittances than conventional ceramics, were prepared by optimizing their composition and structure. The spectral emittance of these ceramics was measured, and a total emittance dependent on temperature was calculated from the spectral emittance. As a result, one obtains ceramics which have a total emittance of 0.2 at a temperature of 1,100 K. In comparison to conventional ceramics with a typical total emittance of 0.8 at 1,100 K, the use of such low-e ceramics leads to a reduction in heat transfer of about 70% via thermal radiation. The results of our calculations were compared with experimental data to validate the theory. Paper presented at the Seventh European Conference on Thermophysical Properties, September 5–8, 2005, Bratislava, Slovak Republic.  相似文献   

2.
A modeling study aimed at characterizing the radiometric properties of a double-beam Fourier-transform infrared interferometer is presented. Measurements showed that the two responsivities associated with each interferometer channel are different in certain spectral regions. This anomaly was attributed to a dissymmetry between the optical transmissions of the two plates that form the beam splitter. This dissymmetry is primarily responsible for the instrument residual emission. A secondary cause of residual emission is attributed to the relative alignment of the two input optics. Both effects were taken into account in a model that gives the instrument residual emission in terms of the beam splitter temperature. Actual results indicate that in the 7-14-mum window the instrument residual emission can be modeled with an absolute radiometric error smaller than 0.5 K (blackbody at 290 K). The model was used to develop an automatic calibration procedure that yields radiance errors smaller than 0.05 muW/cm(2) sr cm(-1) in the 7-14-mum band. The radiometric stability of the interferometer was analyzed.  相似文献   

3.
Optical emission spectra of microwave discharges at the powder mixture surface are experimentally recorded, indicating spatial temperature nonuniformity the within the field of vision. Within the field of vision, the maximal and minimal temperature values calculated from the continuous spectrum (wavelength range 380–620 nm) differ by 20–25%. Modeling of the integral emission spectra of a heated surface with hot spots is performed. Spectral pyrometry of the objects with nonuniform temperature, when used within a narrow spectral interval, gives no possbility of determining the exact nature of the measured temperature because the temperature calculated from this spectrum may differ substantially from both averaged and maximal values. To determine the averaged and maximal temperature, it is necessary to significantly widen the recorded spectral interval.  相似文献   

4.
Spectral-directional emittance measurements for 99.99% aluminum, thermally oxidized in air, were performed using a radiometric technique. The apparatus is comprised of a Fourier transform infrared spectrometer and a blackbody-radiating cavity. The sample holder is held on a slotted arc rack, which allows directional measurements from normal to grazing angles. The aluminum sample was heated for an extended period of time (150 h) at high temperature below its melting point prior to performing measurements. The data presented here cover the spectral range between 3 and 14 μm, directional range from surface normal to 72° polar angle, and temperatures from 673 to 873 K. The complex index of refraction is also reduced from emittance data. Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and Auger depth profiling were used as surface techniques to characterize the thickness and composition of aluminum oxide film that formed on the metallic surface.  相似文献   

5.
The radiance temperature of nickel at its melting point was measured at four wavelengths (in the nominal range of 1.5 to 5 μm) by a pulse-heating technique using a high-speed fiber-coupled four-channel infrared pyrometer. The method was based on rapid resistive self-heating of a specimen from room temperature to its melting point in less than 1 s while simultaneously measuring the radiance emitted by it in four spectral bands as a function of time. A plateau in the recorded radiance-versus-time traces indicated melting of the specimen. The melting-point radiance temperature for a given specimen was determined by averaging the temperature measured along the plateau at each wavelength. The results for several specimens were then, in turn, averaged to yield the melting-point radiance temperature of nickel, as follows: 1316 K at 1.77 μm, 1211 K at 2.26 μm, 995 K at 3.48 μm, and 845 K at 4.75 μm. The melting-point normal spectral emittance of nickel at these wavelengths was derived from the measured radiance in each spectral band using the published value of the thermodynamic (true) melting temperature of nickel.  相似文献   

6.
This paper presents radiometric and geometric models for both temperature and displacement noncontact measurements using an uncooled charge-coupled device (CCD) video camera. Such techniques ("one sensor-two measures") represent an interest in many industrial low cost applications and scientific domains. To benefit from both measurements, we have to use the camera's spectral response in the near infrared spectral band from 0.75 to 1.1 /spl mu/m. In this spectral band, the temperature variations of an uncooled CCD camera are taken into account in the radiometric and geometric models. By using physical models for CCD camera, we quantify detector's quantum efficiency, sensor noise and spatial resolution as a function of the wavelength and of the detector temperature. These models are confirmed by experimental results of calibration with a low cost uncooled camera based on a Sony detector and operating over the detector temperature range of -30 to -50/spl deg/.  相似文献   

7.
We investigate the spectral features of the emission from a superluminal polarization current whose distribution pattern rotates (with an angular frequency omega) and oscillates (with a frequency omega > omega differing from an integral multiple of omega) at the same time. This type of polarization current is found in recent practical machines designed to investigate superluminal emission. Although all of the processes involved are linear, we find that the broadband emission contains frequencies that are higher than omega by a factor of the order of (omega/omega)2. This generation of frequencies not required for the creation of the source stems from mathematically rigorous consequences of the familiar classical expression for the retarded potential. The results suggest practical applications for superluminal polarization currents as broadband radio-frequency and infrared sources.  相似文献   

8.
A detailed analysis of the double-wavelength radiation thermometry technique for determining the thermodynamic temperature is presented. This technique provides an alternative method to absolute filter radiometry without the requirement of traceability to the watt. The analysis derives an algebraic expression for the uncertainties in the temperatures measured with the double-wavelength technique, which shows that the optimum strategy is to employ one narrowband and one broadband spectral responsivity, and that the center wavelengths do not need to be widely separated. With current best estimates for signal and spectral responsivity measurements, it is shown that the double-wavelength method can achieve total uncertainties only about four times larger than the current best absolute radiometric methods. Improvements in the signal measurement in the future could possibly reduce the total uncertainty to a level comparable to absolute radiometry.  相似文献   

9.
Spectral-directional emittance measurements for 99.99% nickel, thermally oxidized in air, were performed at temperatures of 673, 773, and 873 K using an apparatus comprised of a Fourier transform infrared (FTIR) spectrometer, a blackbody radiating cavity (hohlraum), and a sample holder which allows directional measurements. The data cover the spectral range between 2 and 20 μm, and the directional range from a surface normal to 72° polar angle. The Ni sample had a nominal surface roughness of 4.1 μm and was heated for 1 h at the measurement temperatures prior to emission measurements. X-ray diffraction and EDS analyses were performed in order to characterize the sample surface. It was found that the normal emittance of oxidized nickel increases with temperature for the temperature range considered. Directional emittance shows slightly departure from pure metal behavior.  相似文献   

10.
The normal spectral emittance of a thermal barrier coating system developed at the National Aeronautics and Space Administration Lewis Research Center was measured. This emittance was transformed into the hemispherical total emittance and was correlated to the ceramic coating thickness and temperature using multiple-regression curve-fitting techniques. Equations were obtained which can easily be used by a designer to calculate the coating system hemispherical total absorptance and emittance. The system is highly reflective and therefore can significantly reduce radiation heat loads on cooled gas turbine engine components.  相似文献   

11.
荧光量子效率是发射与吸收的光子数之比,是表征荧光材料发光性能的关键参数。然而,用于绝对法测量荧光量子效率的光路和探测器未经校准溯源或是校准方法不当,会造成测量光谱的不准确,进一步影响荧光量子效率计算结果的不准确。采用汞氩灯对单色仪进行校准,保证了激发波长和发射波长的准确性,利用标准辐射源对光路、发射单元单色仪和探测器进行光谱相对强度校准,保证了激发波段和发射波段光谱相对强度的准确性;最后从测量模型出发,对测量不确定度进行了分析,得到在300~360nm的激发光波段和370~900nm的发射光波段内相对合成标准不确定度为3.58%,相对扩展不确定度为7.16%,k=2。通过对单色仪波长校准以及对光谱相对强度进行校准,为荧光量子效率的准确测量提供了参考。  相似文献   

12.
Hahn JW  Park CW  Park SN 《Applied optics》1997,36(27):6722-6728
We develop a modeless dye laser for broadband coherent anti-Stokes Raman spectroscopy (CARS) and investigate the operational characteristics of the modeless laser. The energy efficiency of the modeless laser is 6%, and the beam divergence is 0.65 mrad. We construct a compact movable CARS system with the modeless laser and a graphite tube furnace to assess the accuracy of the CARS temperature. It is found that the difference between the averaged CARS temperature and the radiation temperature measured with an optical pyrometer is <2% at a temperature range from 1000 to 2400 K. We also measure the averaged CARS temperature drift owing to the variation of the spectral distribution of the modeless laser, which is <1.5% during 5 h of operation.  相似文献   

13.
The unpolished surface of crystalline silicon wafers often exhibits non-Gaussian and anisotropic roughness characteristics, as evidenced by the side peaks in the slope distribution. This work investigates the effect of anisotropy on the emittance. The directional-hemispherical reflectance of slightly and strongly anisotropic silicon wafers was measured at room temperature using a center-mount integrating sphere. A monochromator with a lamp was used for near-normal incidence in the wavelength region from 400–1000 nm, and a continuous-wave diode laser at the wavelength of 635 nm was used for measurements at zenith angles up to 60°. The directional emittance was deduced from the measured reflectance based on Kirchhoff’s law. The geometric-optics-based Monte Carlo model that incorporates the measured surface topography is in good agreement with the experiment. Both the experimental and modeling results suggest that anisotropic roughness increases multiple scattering, thereby enhancing the emittance. On the other hand, if the wafer with strongly anisotropic roughness were modeled as a Gaussian surface with the same roughness parameters, the predicted emittance near the normal direction would be lower by approximately 0.05, or up to 10% at a wavelength of 400 nm. Comparisons also suggest that the Gaussian surface assumption is questionable in calculating the emittance at large emission angles with s polarization, even for the slightly anisotropic wafer. This work demonstrates that anisotropy plays a significant role in the emittance enhancement of rough surfaces. Hence, it is imperative to obtain precise surface microstructure information in order to accurately predict the emittance, a critical parameter for non-contact temperature measurements and radiative transfer analysis.  相似文献   

14.
A comparison of the spectral directional emittance of samples as a function of wavelength was performed at the Fourier Transform Infrared Spectrophotometry (FTIS) and the Advanced Infrared Radiometry and Imaging (AIRI) facilities at NIST. At the FTIS, the emittance is obtained indirectly through the measurement of near-normal directional-hemispherical reflectance (DHR) using an infrared integrating sphere. At the AIRI, the normal directional emittance is obtained directly through the measurement of the sample spectral radiance referenced to that from blackbody sources, while the sample is located behind a black plate of known temperature and emittance. On the same setup at the AIRI, the normal emittance at near ambient temperatures is also measured indirectly by a “two-temperature” method in which the sample spectral radiance is measured while the background temperature is controlled and varied. The sample emittance measurements on the comparison samples are presented over a wavelength range of 3.4 μm to 13.5 μm at several near-ambient temperatures and for near-normal incidence. The results obtained validate the two independent capabilities and demonstrate the potential of the controlled background methods for measurements of the radiative properties of IR materials.  相似文献   

15.
Yttrium vanadate phosphors co-doped with Bi3+ and Yb3+ ions have been prepared via the solid-state reaction. The phosphors were characterized by various methods including X-ray diffraction, photoluminescence excitation and photoluminescence spectra. Upon ultraviolet (UV) light excitation, an intense near-infrared (NIR) emission of Yb3+ corresponding to the transition of 2F(5/2) --> 2F(7/2) peaking at 985 nm was observed as a result of energy transfer from O2(-)-V5+ or Bi3+-V5+ charge transfer state (CTS) to Yb3+. A broad excitation band ranging from 250 to 375 nm was recorded when the Yb3+ emission was monitored, which suggests an efficient energy transfer from CTS to Yb3+ ions. The dependence of Yb3+ doping concentration on the visible emission, the NIR emission and decay lifetime has been investigated. The results of visible and NIR spectral evolution with temperature indicate that the mechanism for the NIR-emission is mainly phonon-assisted energy transfer at room temperature, while the mechanism is mainly cooperative energy transfer at low temperature. The YVO4:Bi3+, Yb3+ phosphor has prospects for realizing high efficiency crystalline Si solar cells by converting broadband UV energy into NIR light.  相似文献   

16.
When a highly polished silicon wafer is thermally oxidized, its spectral emittance fluctuates systematically, as the protective silica film grows thicker. If the spectral intensity of the emitted radiation at a wavelength where silica is transparent is monitored, the film thickness can be obtained.  相似文献   

17.
Tu J  Howard D  Collins SD  Smith RL 《Applied optics》2003,42(13):2388-2397
A miniature broadband light source is a critical element in a spectrophotometric microsystem. The design, fabrication, and characterization of a highly stable, miniature broadband light source that comprises filaments of single-crystal silicon are presented. Electrical current versus voltage and radiant emittance spectra under constant voltage bias are measured and related to filament dimensions. A maximum stable operating temperature for these filaments is estimated to be 1200 K. Resistance drift is demonstrated to be less than 0.5% over a 10-h period of continuous operation with visible incandescence. Emittance spectra of a multifilament array, measured at three different electrical biases, are presented and shown to compare well with theoretical blackbody radiation spectra. A continuous, total radiated power of 10.7 mW was achieved with a 1 mm x 1 mm filament array with peak emittance at lambda=2.7 micrometers.  相似文献   

18.
Data for the heat capacity, electrical resistivity, hemispherical total emittance, and normal spectral emittance (at 898 nm) of niobium are reported for the temperature range 1000–2500 K. Measurements were based on a subsecond pulseheating technique. The results are discussed and compared with the literature values. Reported uncertainties for the properties are 3% for heat capacity, 1% for electrical resistivity, 5% for hemispherical total emittance, and 4% for normal spectral emittance.Paper presented at the Ninth Symposium on Thermophysical Properties, June 24–27, 1985, Boulder, Colorado, U.S.A.  相似文献   

19.
A theoretical simulation of a four-band fiber-optic radiometric technique is presented. This is a technique for remote, noncontact temperature measurement of a sample near room temperature, under conditions of unknown emissivity and ambient temperature. A realistic setup of a broadband IR detector, a set of three filters, an IR fiber, and a MATLAB software package for the calculations, is simulated in two steps: a calibration process and a measurement process. The results of the simulation show the limitations and advantages of the four-band radiometric technique and show the expected resolution of the sample temperature and emissivity and of the ambient temperature measurement. The theoretical resolution of the sample temperature measured by the four-band radiometric setup comes close to the resolution achieved in an equivalent single-band radiometric setup. The four-band method has an additional advantage of making it possible to calculate values of emissivity and ambient temperature.  相似文献   

20.
A subsecond duration pulse heating method is used to measure the melting point and radiance temperature (at 653 nm) at the melting point of hafnium containing 3.12 weight percent zirconium. The results yield a value of 2471 K for the melting point on the International Practical Temperature Scale of 1968. The radiance temperature (at 653 nm) of this material at its melting point is 2236 K, and the corresponding normal spectral emittance is 0.39. Estimated inaccuracies are: 10 K in the melting point and in the radiance temperature, and 5 percent in the normal spectral emittance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号