共查询到19条相似文献,搜索用时 62 毫秒
1.
一种空间自适应正则化MAP超分辨率重建算法 总被引:1,自引:0,他引:1
提出一种简单、通用的基于正则化技术的自适应MAP超分辨率重建算法。与以往算法不同,该方法引入了局部空间自适应正则化参数,弥补了传统算法对图像自身的局部特性缺乏考虑的不足。算法通过迭代的方式,利用中间重建结果不断对正则化参数进行更新,并最终得到重建图像。实验结果表明,该方法可以根据不同图像序列的特点以及图像的局部灰度特性,自适应地确定相应的正则化参数,并找到最优解,有效地保护了高分辨率图像的细节信息。 相似文献
2.
所谓超分辨率(SR)技术就是由低分辨率(LR)图像序列来重建高分辨率(HR)图像的技术,而基于压缩图像的SR技术正成为当前研究的热点。为了提高压缩图像的重建质量,在正则化理论的基础上,通过利用比特流中的信息,提出了一种新颖的空时自适应超分辨率重建算法,该算法先利用正则化代价函数控制时域数据和空域先验信息之间的平衡,使正则化参数在SR重建过程中得到自适应地调整,然后利用迭代梯度下降法进行超分辨率重建。仿真实验表明,该自适应算法比采用传统算法重建的图像的主、客观质量有一定的提高,适合压缩图像的应用。 相似文献
3.
4.
《计算机应用与软件》2015,(12)
针对曝光量不同的序列图像超分辨率重建问题,提出一种耦合光度配准的双边全变差正则化MAP超分辨率重建算法。首先计算感兴趣区域图像的方向梯度直方图(HOG)并以此为匹配的特征,其次采用直方图匹配的方法估算序列图像之间的光度映射函数,最后采用双边全变差正则化的超分辨率重建算法进行重建。通过计算重建图像的平均梯度、标准差及图像对比度发现,该算法能够有效提高重建图像的细节信息,并能有效减小重建图像间的亮度差异,提高图像对比度。 相似文献
5.
6.
7.
对于模糊图像的复原问题,从正则化技术克服问题病态性的思想出发,研究了一种有效的超分辨率图像复原方法.在Nguyen等人的正则图像复原框架的基础上,根据Roberts交叉梯度算子构造正则项,从自适应的角度生成正则化参数,并用共轭梯度法求解该模型的目标泛函极小值.计算机仿真结果表明,该方法可较好的再现图像的重要信息,复原图像的相对误差降低,同时,峰值信噪比和主观视觉效果方面都有明显的提高. 相似文献
8.
单帧图像超分辨率重建是指利用一幅低分辨率图像,通过相应的算法来获取一幅高分辨率图像的技术。提出了一种基于 非负邻域嵌入和 非局部正则化 的单帧图像超分辨率重建算法,以弥补传统邻域嵌入算法的不足。在训练阶段,首先对低分辨率图像预放大2倍,以保证在放大倍数较大时,高、低分辨率图像块之间的邻域关系也能得到较好的保持;在重建阶段,使用非负邻域嵌入来有效地解决近邻数的选取问题;最后利用图像块的非局部相似性构造非局部正则项对重建结果进行修正。实验结果表明,相对于传统算法,本方法的重建结果纹理丰富、边缘清晰。 相似文献
9.
10.
11.
超分辨率重建就是通过相应的算法,重建图像截止频率之外的细节信息,重构出一幅清晰的高分辨率图像。首先介绍了超分辨率重建算法——非均匀内差法,迭代反投影法(IBP),凸集投影法(POCS),说明了各算法的概念和应用,并着重介绍了基于最大后验概率(MAP)的图像超分辨率算法,给出了MAP超分辨率复原算法处理实际太赫兹图像的结果。实验表明,超分辨率图像重建具有重建效果好、抗噪声性能强的优点,有效地重建了高分辨率太赫兹图像,在太赫兹成像领域具有良好发展和应用前景。 相似文献
12.
图像超分辨率(SR)重建是利用数字信号处理技术由一系列低分辨率观测图像得到高分辨率图像。为了扩展SR技术的应用范围,提出了一种同时进行图像超分辨率重建和全局运动估计的方法。该方法首先基于最大后验概率(MAP)给出了图像SR重建和运动估计框架,该框架不仅考虑了前后两次迭代所得的HR图像差值对最终重建图像的影响,而且引入了不同LR图像对重建图像的重要性权值,使得算法具有自适应性;然后将总体框架转换为图像SR重建模型和运动估计模型;最后基于非线性最小二乘法对模型进行优化求解,得出了SR重建图像及其全局运动域。实验表明,该方法不仅图像重建效果良好,并有着良好的收敛性。 相似文献
13.
图像超分辨率算法目前最为通用的框架是基于Bayes估计的方法,其求解方法多归于重复背投影(插值)的迭代方法.在特定的成像条件下,基于训练的多核插值滤波器估计方法具有良好的效果.考虑采样过程对图像质量的影响,我们把多核插值滤波器估计方法引入到重复背投影的计算框架下,取得了优于单独使用一种方法的超分辨率结果. 相似文献
14.
基于深度学习的图像超分辨率复原研究进展 总被引:7,自引:0,他引:7
图像超分辨率复原(Super resolution restoration,SR)技术是图像处理领域的研究热点,在视频监控、图像处理、刑侦分析等领域具有广泛的应用需求.近年来,深度学习在多媒体处理领域迅猛发展,基于深度学习的图像超分辨率复原技术已逐渐成为主流技术.本文主要对现有基于深度学习的图像超分辨率复原工作进行综述.从网络类型、网络结构、训练方法等方面分析现有技术的优势与不足,对其发展脉络进行梳理.在此基础上,本文进一步指出了基于深度学习的图像超分辨率复原技术的未来发展方向. 相似文献
15.
超分辨率影像重建已经成为近年来人们广泛研究的热点,利用超分辨率重建技术,可以得到分辨率高于原始影像的重建影像。为此,提出了一个利用多幅具有亚像素位移的低分辨率欠采样影像重建一幅高分辨影像的超分辨率重建方法。该方法利用正则化技术,通过迭代运算解求重建影像的最优解。在迭代过程中,得到的重建影像用于求解下一次迭代的正则化参数,不断的循环迭代,最后求解出重建影像的最优解。对Lena影像进行了处理,并用PSNR影像评价方法对重建影像进行了定量评价。实验结果证明,该方法能较大限度地减弱噪声对重建结果的影响,当重建比率较大时,仍可得到高质量的高分辨率重建影像。 相似文献
16.
一种基于MAP的超分辨率图像重建的快速算法 总被引:3,自引:0,他引:3
超分辨率图像重建技术就是通过融合多幅变形、模糊、有噪、频谱混叠的低分辨率降质图像(或视频序列)来重建一幅高质量高分辨率图像.MAP估计算法是一种广泛使用的统计重建方法.针对标准MAP估计算法运算量大的问题提出了两点改进.第1点是当计算梯度时直接计算目标函数的增量,避免了函数值的冗余计算;第2点是采用非精确一维搜索确定步长,避免了运算量庞大的海塞矩阵的计算.实验结果表明,提出的改进在保持重建效果基本不变的前提下,在很大程度上提高了MAP超分辨率图像重建方法的速率,与此同时保证了算法的收敛性. 相似文献
17.
多分辨率图像序列的超分辨率重建 总被引:1,自引:0,他引:1
针对不同焦距下拍摄的多分辨率尺度的图像序列,本文提出了一种基于尺度不变特征转换(Scale invariant feature transform, SIFT)和图像配准的超分辨率(Super resolution, SR)图像盲重建算法.首先提取图像SIFT特征点,然后用向量夹角余弦进行特征描述符向量的初匹配,并用随机抽样一致性 (Random sample consensus, RANSAC)算法消除误匹配提高配准精度.计算变换参数后,将低分辨率图像(Low-resolution, LR)像素点映射到高分辨率(How-resolution, HR)网格,最后利用像素可信度加权算法填充缺失像素值,重建更高分辨率的图像.实验表明, 本文算法能精确估计图像序列的缩放因子,可以有效处理仿射变换模型,对配准误差也具有一定的鲁棒性.算法从实质上提高了多分辨率尺度图像序列的分辨率,尤其在低分辨率帧数较少可用于重建的信息量严重不足时也能获得比较满意的重建效果. 相似文献
18.
19.
对于图像分割来说,常常需要结合尽可能多的先验信息来分割感兴趣组织。对基于统计先验形状的水平集图像分割方法进行了综述。该分割模型的特点是能量函数由两部分组成:首先是基于图像的梯度或区域灰度的数据项;第二项是先验形状项,对处理因遮挡、噪声和裂口而导致的信息缺失的图像具有鲁棒性。深入讨论了如何从感兴趣组织的训练集中构建一个压缩的形状表达——隐含形状模型;如何构建既包括使全局形状一致的隐含曲面约束,又保持了水平集捕捉局部形变的能力的基于先验形状的水平集图像分割模型;介绍了形状对齐和一致性等关键问题。最后指出了目前存在的问题和进一步的发展方向。 相似文献