首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work has been performed in the framework of the OECD/NEA thermalhydraulic benchmark V1000CT-2. This benchmark is related to fluid mixing in the reactor vessel during a MSLB accident scenario in a VVER-1000 reactor. Coolant mixing in a VVER-1000 V320 reactor was investigated in plant experiments during the commissioning of the Unit 6 of the Kozloduy nuclear power plant. Non-uniform and asymmetric loop flow mixing in the reactor vessel has been observed in the event of symmetric main coolant pump operation. For certain flow conditions, the experimental evidence of an azimuthal shift of the main loop flows with respect to the cold leg axes (swirl) was found.Such asymmetric flow distribution was analyzed with the Trio_U code. Trio_U is a CFD code developed by the CEA Grenoble, aimed to supply an efficient computational tool to simulate transient thermalhydraulic turbulent flows encountered in nuclear systems. For the presented study, a LES approach was used to simulate turbulent mixing. Therefore, a very precise tetrahedral mesh with more than 10 million control volumes has been created.The Trio_U calculation has correctly reproduced the measured rotation of the flow when the CAD data of the constructed reactor pressure vessel where used. This is also true for the comparison of cold leg to assembly mixing coefficients. Using the design data, the calculated swirl was significantly underestimated. Due to this result, it might be possible to improve with CFD calculations the lower plenum flow mixing matrices which are usually used in system codes.  相似文献   

2.
The starting event of the massive air ingress into the core of the HTR module reactor, classified as hypothetical incident, is the very fast depressurization of the primary circuit. Provided that the integrity of the reactor pressure vessel is not in question, a rupture of the connecting pressure vessel between reactor pressure vessel and steam generator vessel is the maximum possible leak cross-section. In this work it is investigated whether the components of the reactor pressure vessel are exposed by the depressurization process to mechanical loads which exceed the load limits. These loads are caused by two different events, the strong momentum change of the fluid and the local pressure differences, respectively. Due to the momentum change the bottom reflector receives the maximum load, whereby only 2% of the compressive strength of the graphite quality used there are reached. However, the load by local pressure differences is between passed volumes and in normal operation, not-passed volumes lead to high load values. A maximum pressure difference of 44.5 bar was calculated at the thermal top shield.  相似文献   

3.
The recent operating experience of the Pressurized Water Reactor (PWR) Industry has focused increasing attention on the issue of reactor vessel pressurized thermal shock (PTS). Previous reactor vessel integrity concerns have led to changes in vessel and plant system design and to operating procedures, and increased attention to the PTS issue is causing consideration of further modifications. Events such as excess feedwater, loss of normal feedwater, and steam generator tube rupture have led to significant primary system cooldowns. Each of these cooldown transients occurred concurrently with a relatively high primary system pressure. Consideration of these and other postulated cooldown events has drawn attention to the impact of operator action and control system effects on reactor vessel PTS.A methodology, which couples event sequence analysis with probabilistic fracture mechanics analyses, was developed to identify those events that are of primary concern for reactor vessel integrity. Operating experience is utilized to aid in defining the appropriate event sequences and event frequencies of occurrence for the evaluation.Once the specific event sequences of concern are identified, detailed thermal-hydraulic and structural evaluations can be performed to determine the conditions required to minimize the extension of postulated flaws or enhance flaw arrest in the reactor vessel. This paper addresses key aspects of the thermal-hydraulic and fracture mechanics analyses of the reactor vessel. The effects of incomplete mixing of safety injection flow in the primary cold leg and vessel downcomer and the application of warm prestressing are emphasized. The results of these analyses are being used to define further modifications in vessel and plant system design and to operating procedures.Previous design considerations that have evolved as a result of reactor vessel integrity evaluations are mentioned. These include the development of realistic design analysis tools and selection of plant system modifications. Modifications that are being developed or are under consideration are also mentioned. These include vessel fluence reductions, additional modifications to operating procedures, increased use of probabilistic event sequence and fracture mechanics analysis methods, enhanced material fracture toughness, and reductions in the severity or frequency of occurrence of dominant reactor vessel PTS transients.  相似文献   

4.
In this paper we develop scaling relationships for mixing in large stratified volumes, both for steam/nitrogen mixtures in containment compartments and for water in suppression pools. The results apply to scaling for integral tests of passive reactor containment systems. Buoyant jets from injected fluids and buoyant wall jets generated by hot and cold surfaces provide the primary mixing in these passive systems. The buoyant jets entrain and transport the stratified fluid, mixing the fluid and reducing the vertical temperature and concentration gradients. We show that scaling for mixing can be satisfied simultaneously with scaling for two-phase natural circulation. The scaling requires a reduced height, accelerated time facility. Accelerated time scaling is advantageous for studying long-term behavior of interest in passive systems, while reduced height improves long-term heat loss, decreases power requirements, and makes simulation of blow-down mixing feasible.  相似文献   

5.
For the validation of computational fluid dynamics (CFD) codes, experimental data on fluid flow parameters with high resolution in time and space are needed.Rossendorf Coolant Mixing Model (ROCOM) is a test facility for the investigation of coolant mixing in the primary circuit of pressurized water reactors. This facility reproduces the primary circuit of a German KONVOI-type reactor. All important details of the reactor pressure vessel are modelled at a linear scale of 1:5. The facility is characterized by flexible possibilities of operation in a wide variety of flow regimes and boundary conditions. The flow path of the coolant from the cold legs through the downcomer until the inlet into the core is equipped with high-resolution detectors, in particular, wire mesh sensors in the downcomer of the vessel with a mesh of 64 × 32 measurement positions and in the core inlet plane with one measurement position for the entry into each fuel assembly, to enable high-level CFD code validation. Two different types of experiments at the ROCOM test facility have been proposed for this purpose. The first proposal concerns the transport of a slug of hot, under-borated condensate, which has formed in the cold leg after a small break LOCA, towards the reactor core under natural circulation. The propagation of the emergency core cooling water in the test facility under natural circulation or even stagnant flow conditions should be investigated in the second type of experiment. The measured data can contribute significantly to the validation of CFD codes for complex mixing processes with high relevance for nuclear safety.  相似文献   

6.
The presence of parallel enclosed channels in a boiling water reactor (BWR) provides opportunities for multiple flow regimes in cocurrent and countercurrent flow under loss-of-coolant accident (LOCA) conditions. To address and understand these phenomena, an integrated experimental and analytical study has been conducted. The primary experimental facility was the steam sector test facility (SSTF), which simulated a full scale 30° sector of a BWR/6 reactor vessel. Both steady-state separate effects tests and integral transients with vessel blowdown and refill were performed. The presence of multidimensional and parallel-channel effects was found to be very beneficial to BWR LOCA performance. The best estimate TRAC-BWR computer code was extended as part of this study by incorporation of a phenomenological upper plenum mixing model. TRAC-BWR was applied to the analysis of these full scale experiments. Excellent predictions of phenomena and experimental trends were achieved.  相似文献   

7.
Small break LOCAs may lead to flow stagnation with high primary system pressure. The thermal mixing of the high pressure safety injection under such conditions has important implications for reactor vessel integrity. Experimental and analytical work in this area during the past few years have produce a comprehensive understanding of the problem. A summary account of these developments, and some new tests of predictive capability are presented.  相似文献   

8.
Neutron-energy spectra were calculated for the interface between the vessel wall and cladding of the Army SM-1A Reactor pressure vessel using the transport theory code Program S and the diffusion code P1MG. Different sets of basic nuclear data and microscopic cross sections were used for the two calculations. Spectra were normalized to the same amount of activation in an iron, neutron flux detector. The transport code predicted a higher flux of neutrons in the energy groups between 6 and 10 MeV resulting in a lower overall intensity for the transport theory spectrum versus the P1MG spectrum. This was found to be consistent with the predictions of two transport codes versus the P1MG code for the PM-2A reactor vessel wall and for a simulated reactor vessel wall experiment. Such divergence of results for a given reactor using two different code analysis techniques raises important questions as to their usually unqualified acceptance and use for projecting the lifetime fluence for a reactor pressure vessel. Strong support is thus generated for establishment of one “standard” set of basic nuclear data from which all reactor physics analysts can draw to generate specific cross sections for reactor physics calculations, and for the writing of a new reactor physics spectrum code specifically for deep penetration analysis of reactor pressure vessel walls.  相似文献   

9.
The influence of density differences on the mixing of the primary loop inventory and the emergency core cooling (ECC) water in the downcomer of a pressurized water reactor (PWR) was analyzed at the ROssendorf COolant Mixing (ROCOM) test facility. ROCOM is a 1:5 scaled model of a German PWR, and has been designed for coolant mixing studies. It is equipped with advanced instrumentation, which delivers high-resolution information for temperature or boron concentration fields.An experiment with 5% of the design flow rate in one loop and 10% density difference between the ECC and loop water was selected for validation of the CFD software packages CFX-5 and Trio_U. Two similar meshes with approximately 2 million control volumes were used for the calculations. The effects of turbulence on the mean flow were modeled with a Reynolds stress turbulence model in CFX-5 and a LES approach in Trio_U. CFX-5 is a commercial code package offered from ANSYS Inc. and Trio_U is a CFD tool which is developed by the CEA-Grenoble, France.The results of the experiment and of the numerical calculations show that mixing is dominated by buoyancy effects: at higher mass flow rates (close to nominal conditions) the injected slug propagates in the circumferential direction around the core barrel. Buoyancy effects reduce this propagation. The ECC water falls in an almost vertical path and reaches the lower downcomer sensor directly below the inlet nozzle. Therefore, density effects play an important role during natural convection with ECC injection in PWRs. Both CFD codes were able to predict well the observed flow patterns and mixing phenomena.  相似文献   

10.
Aiming at one of the decisive alternatives for long-term perspectives of the nuclear power, an integral and closed nuclear energy system concept is proposed; namely, the Advanced Molten-salt Break-even Inherently-safe Dual-missioning Experimental and Test Reactor (AMBIDEXTER) nuclear energy complex. This essentially comprises two mutually independent circuits of the radiation/material transport and the heat/energy conversion, centered at the integral reactor assembly, which enables one to utilize maximum benefits of nuclear energy under minimum risks of nuclear radiation. The entire reactor system resides in a thin and large Hastelloy vessel, the internal part of which is divided into a number of equipment compartments with neither connection pipings nor active valves necessary. As the reactor operates at very low FP inventory throughout its designed lifetime and there is no primary heat transport pipings outside the reactor vessel, significant release of radioactive materials due to any equipment failure should be incredible. The nuclear-thermalhydraulic characteristics of the molten ThF4233UF4 fuel salt extend the self-sustainability of the AMBIDEXTER fuel cycle to enhance the resource security and safeguard transparency. While maintaining the break-even conversion ratio criterion, a flexible fuel management strategy using a certain choice of denaturants should improve its own proliferation-resistance characteristics. As the core technologies associated with developing the AMBIDEXTER concept are mostly available in commercialized forms at present, investigating the integral performance of the concept should be the prime research topic in ongoing 250 MWth prototype design studies.  相似文献   

11.
The object of this work is to investigate fluid mixing phenomena as they related to pressurized thermal shock (PTS) in a pressurized water reactor vessel downcomer during transient cooldown with direct vessel injection (DVI), using test models. The test model designs were based on ABB Combustion Engineering (CE) System 80+ reactor geometry. A cold-leg, small-break loss-of-coolant accident (LOCA) and a main steam line break were selected as the potential PTS events for the ABB-CE System 80+. This work consists of two parts. The first part provides the visualization tests of the fluid mixing between DVI fluids and existing coolant in the downcomer region, and the second part presents the results of thermal mixing tests with DVI in the other test model. Flow visualization tests with DVI have clarified the physical interaction between DVI fluid and primary coolant during transient cooldown. A significant temperature drop was observed in the downcomer during the tests of a small-break LOCA. The measured transient temperature profiles compare well with the predictions from the REMIX code for a small-break LOCA, and with the calculations from the COMMIX-1B code for a stream line break event.  相似文献   

12.
Coolant mixing in the cold leg, downcomer and the lower plenum of pressurized water reactors is an important phenomenon mitigating the reactivity insertion into the core. Therefore, mixing of the de-borated slugs with the ambient coolant in the reactor pressure vessel was investigated at the four loops 1:5 scaled Rossendorf coolant mixing model (ROCOM) mixing test facility. In particular thermal hydraulics analyses have shown, that weakly borated condensate can accumulate in the pump loop seal of those loops, which do not receive a safety injection. After refilling of the primary circuit, natural circulation in the stagnant loops can re-establish simultaneously and the de-borated slugs are shifted towards the reactor pressure vessel (RPV).In the ROCOM experiments, the length of the flow ramp and the initial density difference between the slugs and the ambient coolant was varied. From the test matrix experiments with 0 resp. 2% density difference between the de-borated slugs and the ambient coolant were used to validate the CFD software ANSYS CFX. To model the effects of turbulence on the mean flow a higher order Reynolds stress turbulence model was employed and a mesh consisting of 6.4 million hybrid elements was utilized. Only the experiments and CFD calculations with modeled density differences show stratification in the downcomer. Depending on the degree of density differences the less dense slugs flow around the core barrel at the top of the downcomer. At the opposite side, the lower borated coolant is entrained by the colder safety injection water and transported to the core. The validation proves that ANSYS CFX is able to simulate appropriately the flow field and mixing effects of coolant with different densities.  相似文献   

13.
An integral arrangement is adopted for the Low Temperature District Nuclear-Heating Reactor. The primary heat exchangers, control rod drives and spent fuel elements are put in the reactor pressure vessel together with the reactor core. The primary coolant flows in natural circulation through the reactor core and the primary heat exchangers. The primary coolant pipes penetrating the wall of the reactor pressure vessel are all of small diameters. The reactor vessel constitutes the main part of the pressure boundary of the primary coolant. Therefore a small sized metallic containment closed to the wall of the reactor vessel can be used for the reactor. Design principles and functions of the containment are the same as for the containment of a PWR. But the adoption of a small sized containment brings about some benefits such as a short period of manufacturing, relatively low cost, and ease for sealing. A loss of primary coolant accident would not be happened during a rupture accident of the primary coolant pressure boundary inside the containment owing to its intrinsic safety.  相似文献   

14.
In the framework of joint effort between the Nuclear Energy Agency (NEA) of OECD, the United States Department of Energy (US DOE), and the Commissariat a l'Energie Atomique (CEA), France a coupled three-dimensional (3D) thermal-hydraulics/neutron kinetics benchmark for VVER-1000 was defined. The benchmark consists of calculation of a pump start-up experiment labelled V1000CT-1 (Phase 1), as well as a vessel mixing experiment and main steam line break (MSLB) transient labelled V1000CT-2 (Phase 2), respectively. The reference nuclear plant is Kozloduy-6 in Bulgaria. The overall objective is to assess computer codes used in the analysis of VVER-1000 reactivity transients. A specific objective is to assess the vessel mixing models used in system codes. Plant data are available for code validation consisting of one experiment of pump start-up (V1000CT-1) and one experiment of steam generator isolation (V1000CT-2). The validated codes can be used to calculate asymmetric MSLB transients involving similar mixing patterns. This paper summarizes a comparison of CATHARE and TRAC-PF1 system code results for V1000CT-1, Exercise 1, which is a full plant point kinetics simulation of a reactor coolant system (RCS) pump start-up experiment. The reference plant data include integral and sector average parameters. The comparison is made from the point of view of vessel mixing and full system simulation. CATHARE used a six-sector multiple 1D vessel thermal-hydraulic model with cross flows and TRAC used a six-sector, 18-channel coarse-mesh 3D vessel model. Good agreement in terms of integral parameters and inter-loop mixing is observed.  相似文献   

15.
The phenomenon of fluid/thermal mixing in the cold leg and downcomer of a Pressurized Water Reactor (PWR) has been a critical issue related to the concern of pressurized thermal shock. The question of imperfect mixing arises when the possibility of cold emergency core cooling water contacting the vessel wall during an overcooling transient could produce thermal stresses large enough to initiate a flaw in a radiation embrittled vessel wall. The temperature of the fluid in contact with the vessel wall is crucial to a determination of vessel integrity since temperature affects both the stresses and the material toughness of the vessel material. A simple mixing model is described which was developed as part of the EPRI pressurized thermal shock program for evaluation of reactor vessel integrity.  相似文献   

16.
This paper provides an evaluation of the mitigation effects for the severe accident management strategies of the Wolsong plants which are typical CANDU-6 type reactors. The evaluation includes the effect of the following six mitigation strategies: (1) injection into the primary heat transport system (PHTS), (2) injection into the calandria vessel, (3) injection into the calandria vault, (4) reduction of the fission product release, (5) control of the reactor building condition, (6) reduction of the reactor building hydrogen. The tested scenario is a loss of coolant accident with a small out-of-core break, and the thermal hydraulic and severe accident phenomenological analyses were implemented by using the ISAAC computer program. The calculation results show that the most effective means for a primary decay heat removal is a low pressure safety injection, that for a calandria vessel integrity is an end-shield cooling injection, and that for a reactor building integrity is a pressure control via local air coolers. Besides the above, the usefulness of each safety component was evaluated in this analysis.  相似文献   

17.
An experiment on containment atmosphere mixing and stratification, which was originally performed in the TOSQAN facility in Saclay (France), was simulated with the Computational Fluid Dynamics code CFX4.4. The TOSQAN facility consists of a large cylindrical vessel in which gases are injected. In the considered experiment, steam, air and helium were injected during different phases of the experiment, with steam condensing on some parts of the vessel walls. During certain phases, steady states were obtained when the steam condensation rate became equal to the steam injection rate, with all boundary conditions remaining constant. In the present work, three such intermediate steady states were simulated independently. The essential purpose was to reproduce the non-homogeneous structure of the vessel atmosphere, given that condensation is simulated in such a way to obtain the proper condensation rate. A two-dimensional axisymmetric model of the TOSQAN vessel for the CFX4.4 code was developed. The flow in the simulation domain was modeled as single-phase. Steam condensation on vessel walls was modeled as a sink of mass and energy. Calculated profiles of temperature, steam concentration, and velocity components are compared to experimental results and discussed. The comparison suggests that atmosphere mixing and stratification in an NPP containment at accident conditions could be successfully simulated using the proposed CFD approach.  相似文献   

18.
对于材料已经确定的反应堆压力容器,其辐照脆化效应的主要因素是快中子积分通量。本文应用中子输运格林函数法验算了秦山核电站压力容器1/4厚度处最大快中子通量。分析和评价结果表明,该压力容器的设计对中子辐照是安全的。  相似文献   

19.
The future high-temperature gas-cooled reactor (HTGR) is now designed in Japan Atomic Energy Agency. The reactor has many merging points of helium gas with different temperatures. It is needed to clear the thermal mixing characteristics of helium gas at the pipe in the HTGR from the viewpoint of structure integrity and temperature control. Previously, the reactor inlet coolant temperature was controlled lower than specific one in the high-temperature engineering test reactor (HTTR) due to lack of mixing of helium gas in the primary cooling system. Now, the control system is improved to use the calculated bulk temperature of reactor inlet helium gas. In this paper, thermal–hydraulic analysis on the primary cooling system of the HTTR was conducted to clarify the thermal mixing behavior of helium gas. As a result, it was confirmed that the thermal mixing behavior is mainly affected by the aspect ratio of annular flow path, and it is needed to consider the mixing characteristics of helium gas at the piping design of the HTGR.  相似文献   

20.
In this study, a pool-typed design similar to sodium-cooled fast reactor (SFR) of the fourth generation reactors has been modeled using CFD simulations to investigate the characteristics of a passive mechanism of Shutdown Heat Removal System (SHRS). The main aim is to refine the reactor pool design in terms of temperature safety margin of the sodium pool. Thus, an appropriate protection mechanism is maintained in order to ensure the safety and integrity of the reactor system during a shutdown mode without using any active heat removal system. The impacts on the pool temperature are evaluated based on the following considerations: (1) the aspect ratio of pool diameter to depth, (2) the values of thermal emissivity of the surface materials of reactor and guard vessels, and (3) innerpool liner and core periphery structures. The computational results show that an optimal pool design in geometry can reduce the maximum pool temperature down to ∼551 °C which is substantially lower than ∼627 °C as calculated for the reference case. It is also concluded that the passive Reactor Air Cooling System (RACS) is effective in removing decay heat after shutdown. Furthermore, thermal radiation from the surface of the reactor vessel is found to be important; and thus, the selection of the vessel surface materials with a high emissivity would be a crucial factor for consideration in safety design. This study provides future researchers with a guideline on designing safety measures for the fourth generation of the fast reactors with no particular reference to any specific manufacturer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号