首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 413 毫秒
1.
基于聚吡咯微电极的MEMS微型超级电容器的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
周扬 《电子器件》2011,34(1):1-6
MEMS 微能源是指采用微加工技术制作实现能量的获取与转换、存储与释放的微纳器件与系统,而微型超级电容器则是一种基于电化学电容实现储能的微型能量存储器件,可作为能量存储单元在MEMS微电源系统中获得应用.设计制作了一种具有两腔并排式结构的微型聚吡咯超级电容器.该微型超级电容器南微结构,微电极功能薄膜以及酸性电解液构成,...  相似文献   

2.
超级电容器综述   总被引:1,自引:0,他引:1  
超级电容器发展简史 双电层电容器是建立在双电层理论基础之上的,1879年Helmholz发现了电化学界面的双电层电容性质;1957年,Becker申请了第一个由高比表面积活性炭作电极材料的电化学电容器方面的专利(提出可以将小型电化学电容器用做储能器件);1962年标准石油公司(SOHIO)生产了一种6V的以活性碳(AC)作为电极材料,以硫酸水溶液作为电解质的超级电容器,1969年该公司首先实现了碳材料电化学电容器的商业化;  相似文献   

3.
石墨烯因其高的比表面积、优异的导电性、高的电子迁移率和特殊的二维柔性结构,过去十余年在能源领域引发了极大的关注,电化学储能领域被认为是最有可能在短期内实现石墨烯规模应用的产业领域,特别是在超级电容器和电池领域。本文回顾了近年来石墨烯在超级电容器和电池中的应用,介绍了石墨烯导电剂和储能材料在超级电容器中的应用,以及石墨烯在锂电池电极材料和涂层铝箔中的应用。指出了目前石墨烯材料的品质和成本问题仍是严重制约它在储能领域规模化应用的核心要素。未来,迫切需要石墨烯全产业链的协调合作,推进石墨烯储能材料的研发、生产及应用。  相似文献   

4.
采用1 mol/L的LiBF4/AN(CH3CN)为电解液,对LiNi1/3Co1/3Mn1/3O2/AC体系混合超级电容器进行了电化学性能对比研究.通过优化正负极的容量配比,分别评价了对应的超级电容器的充放电性能、倍率性能和循环寿命.结果表明,在正负极容量配比为4:1时,该体系超级电容器的比能量为11 Wh/kg、比...  相似文献   

5.
20伏高电压型碳纳米管超级电容器的研制   总被引:4,自引:0,他引:4  
王晓峰  王大志  梁吉 《电子学报》2003,31(8):1182-1185
通过催化裂解法制备了碳纳米管并进一步制备了碳纳米管膜片式电极.基于该种材料的超级电容器电极比容量达到42F/g并表现出良好的大电流放电特性.本文采用多种研究方法对基于该种材料的双电层电容器的电化学特性进行了详细的研究.本文还开发了全新的超级电容器组装工艺,采用该工艺组装的碳纳米管超级电容器工作电压可以达到20V并具有良好的容量特性和阻抗特性.  相似文献   

6.
超级电容器作为一种绿色储能体系,在新型能量存储和转化系统发展过程中扮演着重要的角色。综述了超级电容器商业化应用的发展历史,介绍了超级电容器的分类、储能原理和两种电化学性能测试体系,重点阐述了三种改善碳基电极材料性能的思路:结构多孔化、尺度纳米化和材料复合化,展望了碳基电极材料的发展方向。  相似文献   

7.
以壳聚糖为原料,ZnCl_2为活化剂,成功制备了氮掺杂的多孔生物质炭材料。经结构表征和电化学性能测试发现,当壳聚糖炭化物与活化剂的质量比为1∶5时,所得氮掺杂生物质炭材料具有最佳的电化学性能。并基于该氮掺杂生物质炭材料构建了全电池型的对称超级电容器,性能测试结果显示,当功率密度为399 W·kg~(-1)时,其能量密度可达到9 Wh·kg~(-1),在5000个充放电循环后的比电容保持率基本维持100%,而且具有很好的倍率性能。将两个对称超级电容器串联充电后,可以点亮9个小灯泡并且驱动小风扇。因此,该壳聚糖衍生的氮掺杂生物质炭材料是一种非常有应用前景的储能材料。  相似文献   

8.
通过湿法纺丝工艺成功制备了纳米硅/还原氧化石墨烯复合纤维材料,并对其进行形貌表征与电化学性能测试。纳米硅颗粒嵌入石墨烯层间褶皱的结构具有限制硅材料在储锂过程中体积膨胀的作用,适于作为锂离子电容器负极。同时,研究了锂离子电容器多孔活性炭正极材料的双电层电容特性,通过组装成对称超级电容器,对其电化学性能进行测试,并结合材料的形貌,分析其作为锂离子电容器正极的合理性。为使正负极电荷匹配,分别对负极硅碳纤维和正极活性炭材料组装的锂离子半电池的倍率、循环稳定性、电化学阻抗等电化学性能进行了测试。结果表明,纳米硅/还原氧化石墨烯复合纤维材料的比容量最高可达826.2 mA·h/g(在电流密度为0.2 A/g时),活性炭比容量可达39.9 mA·h/g。组装成的锂离子电容器在合理的匹配条件下,充放电首圈循环比容量可达58.2 mA·h/g (在电流密度为0.2 A/g时),能量密度为26.8 W·h/kg,循环100圈后,比容量保持率降至41.7%。  相似文献   

9.
在W.L.Gore&Associates公司,之所以将其创始人其仃独创性的新品开发发理念延续至今,都源于一种材料:聚四氟乙烯。  相似文献   

10.
超级电容器(Supercapacitors,ultracapacitor),又名电化学电容器(Electrochemical Capacitors),双电层电容器(Electrical Doule-Layer Capacitor)、黄金电容、法拉电容,是从二十世纪七、八十年代发展起来的通过极化电解质来储能的一种电化学元件。它不同于传统的化学电源,是一种介于传统电容器与电池之间、具有特殊性能的电源,主要依靠双电层和氧化还原假电容电荷储存电能。但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号