首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用插销试验法研究了JDHS-38#自保护药芯焊丝焊接U75V钢轨的冷裂敏感性,评估了预热温度、线能量、焊道数3个因素对U75V钢轨临界断裂应力的影响.结果表明,现场对钢轨施焊时,采取250℃的预热温度,14 kJ/cm左右的线能量,双层焊等措施可以使钢轨接头热影响区少产生甚至不产生焊接冷裂纹,使其临界断裂应力达646 MPa,与抗拉强度相当.若采用其他工艺参数,临界断裂应力较低,且当拘束拉伸应力高于抗拉强度时,于热影响区发生氢致断裂.焊接接头过热区组织主要为马氏体、贝氏体,断口显微形貌主要为河流花样、泥状花样及爪状花样.  相似文献   

2.
In the present study, gas metal arc welding and flux cored arc welding were applied on SA516 Gr70 carbon steel material. Two different hybrid passes were applied, wherein flux cored wire and solid wire were applied to root pass and filler pass one by one and vice versa. Besides, two more welds of similar electrode root pass and filler pass of flux cored arc welding and gas metal arc welding were acquired. The comparative analysis was carried out in terms of macrostructure and microstructure examination, tensile testing, hardness variations, and impact testing for these classical welds and hybrid welds. The results reveal that, hybrid welds lead to better impact properties relative to classical welds. Maximum angular distortion of 2.66° was reported with classical weld of gas metal arc welding with solid wire root pass and same filler pass. The maximum impact toughness of 49 J/m3 was reported for flux cored root pass and solid wire filler pass at the weld zone. Maximum tensile strength of 596 MPa was reported for hybrid weld of solid root pass and flux cored filler pass. Microstructures are reported with the presence of different acicular ferrite and grain boundary ferrite. Maximum acicular ferrite of 61% was reported with classical weld of flux cored arc welding.  相似文献   

3.
Mechanical properties of high strength steel welded joints strictly depend on the welding process, the filler material composition and the welding geometry. This study investigates the effects of using cored and solid welding wires and implementing various groove angles on the mechanical performance of weld joints which were fabricated employing the gas metal arc welding process. It was found that weld joints of low alloy, high strength steels using low alloy steel cored welding wires exhibited higher tensile strength than that of low alloy steel solid wire and chromium‐nickel steel bare welding wire when the method of gas metal arc welding is employed. The effect of groove angle on the strength and toughness of V‐groove and double V‐groove butt‐joints was investigated. V‐groove joints, with higher tensile strength than double V‐groove joints in the whole range of groove angles, were superior in toughness for small groove angles, but impact toughness values of both joints were comparable for large angles. The effect of heat input and cooling rate on the weld microstructure and weld strength was also investigated by performing thermal analysis employing the commercial software ANSYS. It was concluded that cooling rate and solidification growth rate determined the microstructure of the weld zone which had great consequences in regard to mechanical properties.  相似文献   

4.
In the present investigation, multi-pass gas metal arc welding (GMAW) of SA516 Gr70 carbon steel was carried out by different filler wires such as solid, metal cored and flux cored, wherein, other process parameters were kept constant. The hybrid approach of multi-pass filler wires was applied to obtain three different welds. The root pass was filled by a solid wire for all three cases while the subsequent filler pass was applied through solid, flux-cored and metal cored filler wires, respectively. Metallographic, mechanical and metallurgical analyses such as macrograph study, optical microscopy, tensile testing and hardness variations were performed to address the quality of weld. The results revealed that defect-free sound welds were produced by the hybrid approach of different filler wires in multi-pass GMAW. Overall cost and time reduction can be achieved through hybrid filler welds, without affecting their mechanical strength. Angular distortion was reported minimum at hybrid weld of solid and metal cored filler wire. Maximum reinforcement with higher penetration was observed at weld of solid and metal cored filler wire. Impact toughness was reported higher in case of hybrid weld of solid and flux cored filler wire. Higher macro hardness was reported at weld of solid and flux cored filler wire.  相似文献   

5.
In this study, the effect of microstructure at the base metal (BM), the fine grain heat affected zone (FGHAZ), the coarse grain HAZ (CGHAZ) and weld metal (WM) under different welding heat input on hydrogen permeation in X80 steel weldments have been investigated. Base metal showed the highest effective diffusivity. With each heat input, the effective hydrogen diffusivity in FGHAZ is comparable to that of the base metal. The effective hydrogen diffusivity in weld metal was lower than that in CGHAZ. With increasing the welding heat input, the effective diffusivity in different zones of the weldment decreased correspondingly. Non-metallic inclusions were not detected in each specimen. Constituents in microstructure under low heat input are likely to agglomerate during accelerated cooling. The retained hydrogen may create an unpredictable susceptibility to hydrogen cracking at the CGHAZ even existing during service.  相似文献   

6.
探究了不同焊接工艺对3 mm船用高强钢薄板焊接成形质量的影响.结果表明:3 mm对接试板经不同方法焊接后均呈马鞍形变化.焊条电弧焊和手工气保焊焊接的试板变形严重,且两者变形量和残余应力基本相当,药芯焊丝CMT(cold metal transfer)自动焊接试板的焊缝内部存在夹渣缺陷.利用实心焊丝CMT自动焊接试板的焊缝均匀、内部无缺陷,焊缝中心残余应力明显降低,其变形量平均值比焊条电弧焊减小37.8%,且线能量仅为焊条电弧焊的22.4%.焊接试板变形量与其线能量大小的变化趋势一致.  相似文献   

7.
自保护药芯焊丝焊接过程无需外加保护气体,焊接速度快,在输油管道等领域得到了广泛的应用。文章介绍了管线钢用自保护药芯焊丝国内外研究进展、自保护药芯焊丝冶金特点、典型的管线钢用焊接材料以及自保护药芯焊丝需要解决的问题。  相似文献   

8.
针对某产品铜带焊接工艺,提出了一种电弧热丝方式应用于TIG堆焊铜、钢工艺的研究。电弧热丝可有效预热低电阻率的焊接材料,如铜;传统的电阻热丝只能加热具有高电阻率的焊接材料,如钢。采用电弧热丝系统,热丝电流小于50A时即可有效预热焊丝,与电阻热丝电流400A相当。在相同焊接电流下,能够大大提高焊接熔敷速度;在相同送丝速度下,降低焊接电流,大大降低焊接设备功率。同时证明2种热丝加热方式对钢基体、铜合金的影响相同,特别是对堆焊层铜合金中泛铁量的影响相当。  相似文献   

9.
The distribution of the residual stress in the weld joint of HQ130 grade high strength steel was investigated by means of finite element method (FEM) using ANSYS software. Welding was carried out using gas shielded arc welding with a heat input of 16 kJ/cm. The FEM analysis on the weld joint reveals that there is a stress gradient around the fusion zone of weld joint. The instantaneous residual stress on the weld surface goes up to 800 ∼ 1000 MPa and it is 500 ∼ 600 MPa, below the weld. The stress gradient near the fusion zone is higher than any other location in the surrounding area. This is attributed as one of the significant reasons for the development of cold cracks at the fusion zone in the high strength steel. In order to avoid such welding cracks, the thermal stress in the weld joint has to be minimized by controlling the weld heat input.  相似文献   

10.
Effect of Welding Parameters on Dilution and Weld Bead Geometry in Cladding   总被引:3,自引:0,他引:3  
The effect of pulsed gas metal arc welding (GMAW) variables on the dilution and weld bead geometry in cladding X65 pipeline steel with 316L stainless steel was studied. Using a full factorial method, a series of experiments were carried out to know the effect of wire feed rate, welding speed, distance between gas nozzle and plate, and the vertical angle of welding on dilution and weld bead geometry. The findings indicate that the dilution of weld metal and its dimension i.e. width, height and depth increase with the feed rate, but the contact angle of the bead decreases first and then increases. Meantime, welding speed has an opposite effect except for dilution. There is an interaction effect between welding parameters at the contact angle. The results also show forehand welding or decreasing electrode extension decrease the angle of contact. Finally, a mathematical model is contrived to highlight the relationship between welding variables with dilution and weld bead geometry.  相似文献   

11.
In this present work, the influence of different consumables on weld properties of carbon steel plate was studied by automatic gas metal arc welding under constant voltage mode. For all experiments, the process parameters such as welding current of 200 A, voltage of 28 V and welding speed of 200 mm/min were kept constant. The results indicate that the angular distortion remained higher for solid wire, whereas it was minimum for flux-cored wire and the lowest in metal-cored wire. Mechanical properties such as yield strength, tensile strength, elongation and joint efficiency remained high for solid wire relative to cored wire. Excellent impact toughness of the weld metal and heat-affected zone was reported for the flux-cored welds compared with solid wire and metal-cored welds.  相似文献   

12.
日本潜艇用钢及焊接材料的焊接性能综述   总被引:1,自引:0,他引:1  
本文综述了日本的潜艇用钢及其焊接材料的各项焊接性能试验情况。对NS63和NS80钢的大量试验结果表明:为了防止产生焊接裂纹,应根据钢种强度级别、板厚和拘束应力的不同来选择不同的预热和道间温度,通常在50~150℃之间变化;相应的焊接热输入也宜在16~24 kJ/cm之内选配,以便得到与焊材相适应的临界冷却速度,使之满足焊缝力学性能的要求。还要限制施焊环境的水蒸气分压(≤25mmHg),焊材的吸潮量要≤0.20%。另外,对NS110钢的低强匹配焊接接头也进行了大量的试验工作,结果表明:在焊缝强度比母材降低15%的条件下仍具有良好的综合性能,将其应用到潜艇壳体上是可以信赖的。  相似文献   

13.
The current work presents some observations about the effect of welding heat input on the microstructure, hardness and corrosion resistance of AWS E309MoL-16 weld metal, diluted with AISI 316L austenitic stainless steel plates. Such welds are widely used during overlay of equipment in the petroleum and gas industries. Results show that the welds contained δ-ferrite varying between vermicular to lathy morphology, typically encountered in welds which solidify in ferrite–austenite mode (FA). Conversely, contents and morphology of δ-ferrite in the weld metals were altered, showing an increase of welding heat input. The corrosion rate of the weld metal indicated that when higher levels of welding heat input are used the corrosion rate is reduced. This may be attributed to metallurgical changes, especially variations in the proportion of δ-ferrite, caused by changes in cooling rate.  相似文献   

14.
The effect of heat input on martensite formation and impact properties of gas metal arc welded modified ferritic stainless steel (409M) sheets (as received) with thickness of 4 mm was described in detail in this work. The welded joints were prepared under three heat input conditions, i.e. 0.4, 0.5 and 0.6 kJ/mm using two different austenitic filler wires (308L and 316L) and shielding gas composition of Ar + 5% CO2. The welded joints were evaluated by microstructure and charpy impact toughness. The dependence of weld metal microstructure on heat input and filler wires were determined by dilution calculation, Creq/Nieq ratio, stacking fault energy (SFE), optical microscopy (OM) and transmission electron microscopy (TEM). It was observed that the microstructure as well as impact property of weld metal was significantly affected by the heat input and filler wire. Weld metals prepared by high heat input exhibited higher amount of martensite laths and toughness compared with those prepared by medium and low heat inputs, which was true for both the filler wires. Furthermore, 308L weld metals in general provided higher amount of martensite laths and toughness than 316L weld metals.  相似文献   

15.
Stainless steel clad plate is widely used in petroleum, chemical and medicine industries due to its good corrosion resistance and high strength. But cracks are often formed in clad layer during the manufacture or service, which are often repaired by repair welding. In order to ensure the structure integrity, the effects of residual stress need to be considered. The objective of this paper is to estimate the residual stress and deformation in the repair weld of a stainless steel clad plate by finite element method. The effects of heat input and welding layer number on residual stresses and deformation have been studied. The results show that large residual stresses have been generated in the repair weld. The heat input and layer number have great effects on residual stress distribution. With the heat input and welding layer number increasing, the residual stresses are decreased. Using multiple-layer welding and higher heat input can be useful to decrease the residual stress, which provides a reference for optimizing the repair welding technology of this stainless steel clad plate.  相似文献   

16.
Cracking morphology in the fusion zone of HQ130 high strength steel was researched by “the y-slit test“and “three-point bend test“,ultrasonic test and microscope.HQ130 and Q163 high strength steel welded by Ar CO2 gas shielded arc welding under the condition without preheating.Experimental results indicated that welding cracks were produced in the partially melted zone of the weld root ofHQ130 steel side and propagated parallel to the fusion zone.The cracks were developed alternatively between the weld and the partially melted zone, and are not strictly ruptured at W/F(weld metal/fusion zone) boundary surface.Controlling weld heat input(E) about 16kJ/cm could make the cracking rate lowest and satisfy the performance requirement of welded joint zone.  相似文献   

17.
目的针对传统钢材硬度低、不耐磨损的问题,选用WC颗粒来增强传统钢材性能,研究不同工艺对WC颗粒增强钢基材料的影响。方法采用埋弧焊方法,将含有WC颗粒的药芯焊丝在钢板表面进行堆焊,采用SVS3020显微镜、光学显微镜和显微硬度计对焊缝的显微组织进行观察与分析。结果随着焊接电流、电压的增大,焊缝成形逐渐完好,无焊缝缺陷,焊接速度增大,焊缝有夹渣缺陷产生;焊缝硬度随着电流、速度的提升而增大,但随电压的提升而下降。结论埋弧焊焊接选用350 A电流、32 V电压和20 m/s速度成形的焊缝质量最佳,基体的稀释作用对堆焊合金层的显微硬度也有明显影响。  相似文献   

18.
In this investigation,an attempt has been made to study the influence of welding consumables on the factors that influence cold cracking of armour grade quenched and tempered(Q&T) steel welds.Flux cored arc welding(FCAW) process were used making welds using austenitic stainless steel(ASS) and low hydrogen ferritic steel(LHF) consumables.The diffusible hydrogen levels in the weld metal of the ASS and LHF consumables were determined by mercury method.Residual stresses were evaluated using X-ray stress analyze...  相似文献   

19.
The cold pressure welding of metals is a joining by forming technique capable of joining both similar and dissimilar metals in their solid state. In this article collective research on the cold pressure welding of metals with the aim of increasing both the overall weld strength and the weld‐ability is presented. The application of innovative strategies based on electrochemical methods for an optimized conditioning of metal surfaces is investigated. The results account for a noticeable increase in the weld strength of steel‐aluminum joints after a surface activation consisting of either an electrochemical roughening or electrodeposition of a bifunctional organosilane thin film. In addition to the surface activation process regimes for the pre‐ and post‐welding heat treatment is investigated. Both weld strength and weld ability are improved due to heat treatments of steel sheets with various coatings and uncoated aluminium. The cold pressure welding is hereby done by incremental rolling, a new design process that allows for the manufacture of linear and curved joints between sheet metal blanks.  相似文献   

20.
Microstructure performance in the welding zone of T91 heat-resistant steel under the condition of TIG welding was researched by means of metallography, X-ray diffraction and scanning electron microscope (SEM). Experimental results indicated that microstructure of T91 weld metal was austenite + a little amount of S ferrite when using TGS-9cb filler wire. Substructure inside the austenite grain was crypto-crystal lath martensite, on which some Cr23C6 blocky carbides were distributed. The maximum hardness (HRC44) in the welding zone is near the fusion zone. There existed no obvious softening zone in the heat-affected zone (HAZ). For T91 steel tube of $63 mmx5 mm, when increasing welding heat input (E) from 4.8 kJ/cm to 12 5 kJ/cm, fracture morphology in the fusion zone and the HAZ changed from dimple fracture into quasi-cleavage fracture (QC). Controlling the welding heat input of about 9.8 kJ/cm is suitable in the welding of T91 heat-resistant steel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号