首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three-dimensional (3D) photonic crystals with a diamond structure made of a dense SiO2 ceramic were successfully fabricated using a CAD/CAM micro-stereolithography and sintering process. The designed lattice constant of the diamond unit cell was 500 μm and the forming tolerance from 50 vol% SiO2 paste (before sintering) was around 15 μm. After the SiO2-resin photonic crystals were formed via micro-stereolithography, they were converted to pure SiO2 ceramic photonic crystals of 99% theoretical density by sintering at 1400°C. The electromagnetic wave propagation in these dense SiO2 photonic crystals was measured by terahertz-time-domain spectroscopy. The results showed that the band gap appeared between 470 and 580 GHz in the Γ– X 〈100〉 direction, between 490 and 630 GHz in the Γ– K 〈110〉 direction, and between 400 and 510 GHz in the Γ– L 〈111〉 direction, resulting in the formation of a common band gap in all directions between 490 and 510 GHz. These results agreed well with the band gaps calculated by the plane wave expansion method.  相似文献   

2.
Dense three-dimensional microphotonic crystals of SiO2–Al2O3 ceramics were fabricated using microstereolithography and successive sintering process. The forming dimensional tolerance for a 50 vol% ceramic paste is 10 μm and sintering shrinkage is around 12%. Diamond-type photonic crystals with lattice constants of 500 and 125 μm were formed and sintered successfully. The band gaps of the samples were measured and compared with the theoretically calculated band diagram.  相似文献   

3.
Ceramic photonic crystals with diamond structure were fabricated using stereolithography and successive sintering. The green body of an epoxy resin incorporating 10 vol% TiO2–SiO2 was formed by stereolithography and then heated in air at 1100°–1400°C for 2 h. The sintered products maintained the diamond structure with a linear shrinkage ratio of about 57% and a porosity of 38%. The ceramic photonic crystal with eight unit cells showed a photonic band gap at the center frequency of 23.5 GHz. This fabrication method of three-dimensional (3D) ceramic photonic crystals is applicable to other 3D structural ceramics and does not require any molding techniques.  相似文献   

4.
We characterized SiO2–TiO2 nano-hybrid particles, prepared using the sol–gel method, using high-resolution transmission microscopy. A few nanometer-ordered TiO2 anatase crystallites could be observed on the monodispersed SiO2 nanoparticle surface. The quantum size effect of the TiO2 anatase crystallites is attributed to the blue shift of the absorption band. The rough surface of the SiO2–TiO2 nano-hybrid particles was derived from the developed growth planes of the TiO2 anatase crystallites, grown from fully hydrolyzed Ti alkoxide that did not react with acetic acid during the crystallization process at 600°C thermal annealing.  相似文献   

5.
Thermoplastic co-extrusion was employed to fabricate an anisotropic dielectric composite based on titanium dioxide with a microcellular architecture with 50 μm macropore channels aligned to create unidirectional porosity. The resulting channeled structure exhibits artificial anisotropic dielectric properties, with the dielectric relative permittivity being 9.6 transverse to the channels and 90 in the longitudinal direction.  相似文献   

6.
7.
以聚丙烯酸(PAA)和TiO2纳米粒子为电介质材质,采用旋涂技术制备了PAA/TiO2一维光子晶体。用扫描电子显微镜对其层层沉积的结构进行了表征,用紫外可见反射光谱对光子禁带进行了研究,考察了光子禁带与成膜参数的关系。结果表明,通过调控旋涂速度或者PAA溶液质量分数,可以制备出具有不同光子禁带的PAA/TiO2一维光子晶体,且光子禁带随旋涂速度的加快线性蓝移、随PAA溶液质量分数的增大线性红移。  相似文献   

8.
The solubility of TiO2 in tetragonal ZrO2 is 13.8±0.3 mol% ui 1300°C, 14.9±0.2 mol% at 1400°C, and 16.1±0.2 mol% at 1500°C. These solid solutions transform to metastable monoclinic solid solutions without compositional change on cooling to room temperature.  相似文献   

9.
Using a multipass extrusion process, continuous porous Al2O3 body (∼41% porosity) was produced and used as a substrate to fabricate continuous porous TiO2/Al2O3 composite membrane. The diameter of the continuous pores of the porous Al2O3 body was about 150 μm. The TiO2 nanopowders dip coated on the continuous pore-surface Al2O3 body existed as rutile and anatase phases after calcination at 520°C in air. However, after aging of the fabricated continuous porous TiO2/Al2O3 composite membrane in 20% NaOH at 60°C for 24 h, a large number of TiO2 fibers frequently observed on the pore surface. The diameter of the TiO2 fibers was about 150 nm having a high specific surface area. However, after 48-h aging period, the diameter of the TiO2 fibers increased, which was about 3 μm. Most of the TiO2 fibers had polycrystalline structure having nanosized rutile and anatase crystals of about 20 nm.  相似文献   

10.
Titanium diboride can be produced by ball-milling a mixture of TiO2, B2O3, and Mg metal for between 10 and 15 h. The reaction was found to be completed during the milling with no evidence of residual Mg. The unwanted phase, MgO, was readily removed by leaching in acid. The leached powder obtained after 15 h milling had a particle size of <200 nm and was highly faceted. The particle size decreased to ∼50 nm after 100 h milling and seemed to be relatively monodisperse. Scherrer calculation of the crystallite size showed that the product particles were probably single crystal.  相似文献   

11.
12.
The ferroic phase-transition behavior of two (Na1/2Bi1/2)TiO3(NBT) crystals grown by flux and by the Czochralski method has been investigated in the present study. Although both the tetragonal and the rhombohedral phases of NBT are expected to be ferroelastic, these crystals exhibit different ferroelastic behavior. The two NBT crystals also show differences in the amount of temperature hysteresis and the thermal expansion coefficients. These differences can be attributed to nonstoichiometry and structural variations dependent on the growing method. The present investigation has revealed a second maximum at −450°C in dielectric constant (( T )) curves, which could indicate that the intermediate tetragonal phase is either polar or antipolar. This maximum, however, originates from space-charge polarization and interaction between the charge carrier and the electrode, such that the tetragonal phase, in fact, is para-electric. The diffuse phase transition (DPT) of the NBT crystal, therefore, is from a paraelectric and ferroelastic tetragonal phase to a ferroelectric and ferroelastic rhombohedral phase. The crystallographic supergroup-subgroup relationships in the ferroic phase transitions of NBT crystals are discussed.  相似文献   

13.
Scanning electron microscopy and electron probe micro-analysis were used to investigate the microstructure of both slow-cooled and quenched polycrystalline BaTiO3 specimens with a small excess of TiO2 (Ba/Ti=0.995 to 0.999) or of BaO (Ba/Ti=1.002 and 1.005). The electron micrographs of polished and etched TiO2-excess BaTiOs samples, and of fracture surfaces of quenched samples, showed a second phase in the grain boundaries and triple-point regions, whereas no second phase was observed in samples having Ba/Ti=1.000. Microprobe analysis of the second phase gave compositions near that of the reported adjacent phase of higher TiO2 content, Ba6Ti17O40. The results indicate that the solubility of TiO2 in BaTiO3 is <0.1 mol%.  相似文献   

14.
In the TiO2-SiO2 system, anatase solid solutions (ss) containing up to similar/congruent ∼15 mol% SiO2 are formed in the as-prepared state by the hydrazine method. The lattice parameters a and c decrease linearly from 0.3785 to 0.3776 nm and from 0.9514 to 0.9494 nm, respectively, with increased SiO2 content. At high temperatures, the solid solutions by transformation decompose into rutile and amorphous SiO2. The anatase(ss) powders have been characterized for particle size and surface area. They consist of very fine particles (7-25 nm). Surface areas at low temperatures are very high and do not drop below 60 m2/g at 1000°C. Nanostructured anatase(ss) ceramics, with greaterthan/equal to 99.5% of theoretical density and an average grain size of 72 nm, have been fabricated by hot isostatic pressing for 1 h at 850°C and 196 MPa. Their mechanical and electrical properties have been examined.  相似文献   

15.
Micrometer-scale anatase-phase TiO2 congeries assembled with hollow spheres have been synthesized by a bubble-template method combined with a facile chemical process. The as-prepared products were characterized by means of X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. Some of the congeries exhibited unique three-dimensional hierarchical architectures. The bubble-template strategy used in the synthetic process may represent a general approach to fabricate hollow micro- and nanostructures and therefore contribute to the formation mechanisms of hollow micro- and nanostructures.  相似文献   

16.
Thin films of titania have been prepared by spin coating on fused silica, Si(100), and rutile(110), starting with a sol–gel process. The alkoxide solution was chelated with diisopropanolamine, and the resulting precursor solution was hydrolyzed prior to coating. Oriented rutile films were obtained on fused silica and Si(100), while epitaxially oriented film was formed on rutile (110). X-ray diffraction results indicated that the as-deposited films transformed to rutile via anatase with increasing temperature. The phase transformation temperature was found to be dependent on the substrate, and it was in general higher on the substrates than that observed for the gel powder. Microstructural studies revealed that these films consisted of finely dispersed grains of 0.05 to 0.15 μm in size.  相似文献   

17.
18.
TiO2 bicrystals with controlled misorientation have been grown by a laser-heated floating-zone method using a [001] oriented bicrystal seed designed for producing a (210)[001] tilt boundary. The grain boundary and crystal morphology are sensitive to the growth atmosphere, as confirmed by optical and transmission electron microscopies and by the Laue X-ray back-reflection method. These observations are discussed with respect to the nonstoichiometry of TiO2.  相似文献   

19.
By a progressive weight percent substitution of TiO2 for SiO2 at various rations of concentration of K2O and PbO, the entire region of glass formation in the quaternary system K2O–PbO–SiO2–TiO2 was covered with 51 glass compositions. The properties of these glasses were determined and studied with respect to the role of TiO2 in the system. The results indicated that the dielectric constant increased progressively with increasing TiO2 concentration whereas the dissipation factor showed an overall decrease, when measured at 1 Mc and 25°C. Density and the refractive index increased progressively with increasing TiO2 concentration but deviated from the additive relation. Chemical durability, expansivity, and softening temperature vs. composition curves showed definite inflections. The effect of TiO2 on oxygen packing indicated that Ti4+ strengthens the network in lower concentrations and weakens the network in higher concentrations in this system. It appears to be likely that Ti4+ changes its coordination number form 4 to 6.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号