首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Naphthoquinone compounds have various pharmacological effects such as antiviral, antifungal and anticancer activities. We demonstrated the differentiation of the inducing effect of a naphthoquinone derivative, 2-chloro-3-amino-1,4-nahpthoquinone (NQCA) on the human leukemia cell line U-937. When U-937 cells were treated with NQCA for 4 days, phenotypes indicative of differentiation such as nitroblue tetrazolium (NBT)-reducing activity and phagocytosis were induced. To evaluate the route of differentiation of U-937 cells induced by NQCA, we determined naphthol AS-D chloroacetate esterase and alpha-naphthyl acetate esterase activities. Four days treatment of U-937 cells with NQCA increased alpha-naphthyl acetate esterase activity about 63.5% but naphthol AS-D chloroacetate esterase was not detected. These results indicate that NQCA caused differentiation of U-937 cells into macrophage-like cells. Since protein kinase C (PKC) and protein kinase A (PKA) have important roles in cell-differentiation and proliferation, we employed a PKC inhibitor NA-382 and a PKA inhibitor H-89 to examine the effects of each kinase on the differentiation of U-937 cells. The PKC inhibitor NA-382 decreased the effect of NQCA on U-937 cells, while the PKA inhibitor H-89 did not. Also glutathione (GSH) inhibited the effect of NQCA. It is concluded that the differentiation-inducing effect of NQCA on U-937 cells may be attributed to PKC activation followed by production of free radicals.  相似文献   

2.
The rod photoreceptors of teleost retinas elongate in the light. To characterize the role of protein kinases in elongation, pharmacological studies were carried out with rod fragments consisting of the motile inner segment and photosensory outer segment (RIS-ROS). Isolated RIS-ROS were cultured in the presence of membrane-permeant inhibitors that exhibit selective activity toward specific serine/threonine protein kinases. We report that three distinct classes of protein kinase inhibitors stimulated elongation in darkness: (1) cyclic-AMP-dependent protein kinase (PKA)-selective inhibitors (H-89 and KT5720), (2) a protein kinase C (PKC)-selective inhibitor (GF 109203X) that affects most PKC isoforms, and (3) a kinase inhibitor (H-85) that does not affect PKC and PKA in vitro. Other kinase inhibitors tested neither stimulated elongation in darkness nor inhibited light-induced elongation; these include the myosin light chain kinase inhibitors ML-7 and ML-9, the calcium-calmodulin kinase II inhibitor KN-62, and inhibitors or activators of diacylglycerol-dependent PKCs (sphingosine, calphostin C, chelerythrine, and phorbol esters). The myosin light chain kinase inhibitors as well as the PKA and PKC inhibitors H-89 and GF 109203X all enhanced light-induced elongation. These observations suggest that light-induced RIS-ROS elongation is inhibited by both PKA and an unidentified kinase or kinases, possibly a diacylglycerol-independent form of PKC.  相似文献   

3.
The regulatory mechanism of Bcl-2 protein expression was investigated in SH-SY5Y cells, the human neuroblastoma cell line that expresses natively Bcl-2 proteins. WHen the cells were treated with 12-O-tetradecanoylphorbol 13-acetate (TPA) or retinoic acid, the level of Bcl-2 protein was increased compared with the control. These effects were inhibited by pretreatment with a protein kinase C (PKC) inhibitor, staurosporine or calphostin C. The level of Bcl-2 protein was also increased by treatment with carbachol, a muscarinic acetylcholine receptor (mAChR) agonist, and the effect were also inhibited by pretreatment with staurosporine or calphostin C. An addition, a carbachol-induced increase in Bcl-2 protein levels and a transient elevation of [Ca2+]i were inhibited by pretreatment with 4-DAMP (4-diphenylacetoxy-N-methylpiperidine), an m3 mAChR antagonist. In contrast, the level of Bcl-2 protein was decreased by treatment with dibutyryl cAMP (diBu-cAMP), forskolin, or cholera toxin, and the effects of diBu-cAMP were inhibited by pretreatment with a protein kinase A (PKA) inhibitor, H-89. From these results, we suggest that the expression of Bcl-2 proteins is regulated by PKC and PKA in positive and negative manners, respectively, in SH-SY5Y cells. Furthermore, the nucleosomal DNA fragmentation induced by serum depletion for 4 h was observed in SH-SY5Y cells when the level of Bcl-2 protein was down-regulated by treatment with 1 mM diBu-cAMP for 3 days, although the DNA fragmentation by serum depletion for 4 h was not observed in nontreatment cells, indicating that Bcl-2 proteins whose expression is regulated by PKC and PKA play important roles in serum depletion-induced apoptosis.  相似文献   

4.
Modulation of protein kinase C (PKC) and cAMP-dependent protein kinase (PKA) activities by delta-opioid receptor specific agonist [D-Pen2, D-Pen5]-enkephalin (DPDPE) was investigated in neuroblastoma x glioma hybrid NG 108-15 cells. DPDPE activated PKC in a dose-dependent manner, with the maximal response at 5 min. The DPDPE-stimulated PKC activation could be blocked by naltrindole. The activation of PKC by DPDPE was dependent on Ca2+ and was inhibited by chelerythrine chloride (10 microM), but not by H89 (1 microM). Pretreatment of NG 108-15 cells with pertussis toxin (100 ng/ml for 24 h) completely abolished DPDPE-stimulated PKC activation. In contrast to the result from the acute treatment with DPDPE, which had no significant effect on PKA activity, chronic treatment of DPDPE (1 microM for 24 h) increased PKA activity, but reduced the basal activity of PKC. These results demonstrated that DPDPE differentially modulated PKC and PKA activities via a receptor-mediated, PTX sensitive pathway.  相似文献   

5.
When 7721 human hepatocarcinoma cells were treated with 100 nM phorbol-12-myristate-13-acetate (PMA), the activity of N-acetylglucosaminyltransferase V(GnT-V) in the cells varied in accordance with the activity of membranous protein kinase C (PKC), but not with that of cytosolic PKC. Quercetin, a non-specific inhibitor of Ser/Thr protein kinase, and D-sphingosine and staurosporine, two specific inhibitors of PKC, blocked the activation of membranous PKC and GnT-V by PMA. Among the three inhibitors, quercetin was least effective. The inhibitory rates of quercetin and staurosporine toward membranous PKC and GnTV were proportional to the concentrations of the two inhibitors. The activities of GnTV and membranous protein kinase A (PKA) were also induced in parallel by dibutyryl cAMP (db-cAMP) and this induction was blocked by a specific PKA inhibitor. When cell free preparations of 7721 cells and human kidney were treated with alkaline phosphatase (ALP) to remove the phosphate groups, the GnTV activities were decreased. These results suggest that GnTV may be activated by membranous PKC or PKA, indirectly or directly, via phosphorylation of Ser/Thr residues.  相似文献   

6.
It is well-established that in heart, both the L-type Ca2+ channel and the cystic fibrosis transmembrane conductance regulator Cl- channel are regulated by cAMP-dependent phosphorylation. However, it is not clear whether both of these channels are regulated in concert by protein kinase A (PKA) or whether there are mechanisms that independently control the phosphorylation of these two PKA targets. The purpose of this study was to compare the effects of various protein phosphatase and protein kinase inhibitors on these two ionic currents (ICa and ICl) in guinea pig ventricular myocytes to gain insight into these questions. We found that both the stimulation and washout of the effects of isoproterenol on ICl are about twice as fast as the effects on ICa, probably because the dephosphorylation reaction for ICl is faster than that for ICa. In contrast, inhibition of protein phosphatases with 10 microM microcystin stimulated both ICa and ICl, but the stimulation of ICl was much slower and smaller than the stimulation of ICa. The effect of microcystin was inhibited by staurosporine (Ki = 171.5 and 161 nM for ICa and ICl, respectively), suggesting that the stimulation was due to a kinase. The kinase was not protein kinase C (PKC) because it was not inhibited by the specific pseudosubstrate inhibitor of PKC, PKC(19-31), and it was not PKA because it was not inhibited by adenosine 3',5'-cyclic phosphorothioate. These results suggest that although both the Ca2+ and Cl- channels are regulated by cAMP-dependent phosphorylation, another protein kinase may also regulate these channels, and the kinetics of the response of the channels to phosphorylation can be modulated independently by protein phosphatases.  相似文献   

7.
The regulation of 11beta-hydroxysteroid dehydrogenase type II (11beta-HSD2) gene expression was studied in primary cultures of rat adrenocortical cells. The protein kinase A (PKA) pathway agonists forskolin, dibutyryl cAMP and ACTH caused a 5-10 fold increase in 11beta-HSD2 mRNA as determined by semiquantitative PCR. The effect of forskolin could be partially inhibited by the addition of the phorbol ester TPA, an activator of the protein kinase C (PKC) pathway. The increase in mRNA encoding 11beta-HSD2 was accompanied by increased synthesis of 11beta-HSD2 as measured by immunoprecipitation of labeled protein. It is concluded that both the PKA and PKC pathways are involved in the regulation of rat adrenal 11beta-HSD2 gene expression.  相似文献   

8.
Previous work has shown that PMA and diacylglycerols, activators of protein kinase C (PKC) can suppress cell polarity and locomotor activity of Walker carcinosarcoma cells in vitro, suggesting that PKC activation may result in a stop signal for tumor cell locomotion. This hypothesis was further analysed. The present results show that the DAG kinase inhibitor, R 59022, suppressed tumor cell polarity and strongly inhibited cell locomotion at a concentration of 10(-4), thus supporting the earlier finding that an increased availability of DAGs can suppress the locomotor activity of Walker carcinosarcoma cells. The results support the stop-signal hypothesis of PKC activation insofar as DAG kinase inhibition mimics the effects of DAGs and PMA. In order to clarify further the effects of protein kinase modulation on locomotion, we now extended our studies on structurally different inhibitors of protein kinases. In contrast to H-7, HA-1004 had no effect on cell polarity and did not reduce cell locomotion in the presence of colchicine, but reduced the proportion of spontaneously locomoting cells by 70% at 3 x 10(-4) M. Polymyxin B suppressed cell polarity and locomotion only at concentrations that proved to be toxic. Tamoxifen had no significant effect on cell polarity and locomotor activity. Sangivamycin did not suppress cell polarity and spontaneous locomotion at a concentration range of 10(-9) M to 10(-4) M. However, at 10(-4) M it decreased the proportion of migrating, colchicine-stimulated cells by 50%. The diverse responses to structurally different PKC inhibitors may be explained by their limited and variable specificity for PKC and different mechanisms of action on PKC.  相似文献   

9.
10.
We used melanophores, cells specialized for regulated organelle transport, to study signaling pathways involved in the regulation of transport. We transfected immortalized Xenopus melanophores with plasmids encoding epitope-tagged inhibitors of protein phosphatases and protein kinases or control plasmids encoding inactive analogues of these inhibitors. Expression of a recombinant inhibitor of protein kinase A (PKA) results in spontaneous pigment aggregation. alpha-Melanocyte-stimulating hormone (MSH), a stimulus which increases intracellular cAMP, cannot disperse pigment in these cells. However, melanosomes in these cells can be partially dispersed by PMA, an activator of protein kinase C (PKC). When a recombinant inhibitor of PKC is expressed in melanophores, PMA-induced pigment dispersion is inhibited, but not dispersion induced by MSH. We conclude that PKA and PKC activate two different pathways for melanosome dispersion. When melanophores express the small t antigen of SV-40 virus, a specific inhibitor of protein phosphatase 2A (PP2A), aggregation is completely prevented. Conversely, overexpression of PP2A inhibits pigment dispersion by MSH. Inhibitors of protein phosphatase 1 and protein phosphatase 2B (PP2B) do not affect pigment movement. Therefore, melanosome aggregation is mediated by PP2A.  相似文献   

11.
Cardiomyocytes subjected to brief episode of hypoxia possess a resistance to serious damaging effect exerted by a subsequent long-time hypoxia on these cells, which is called hypoxic preconditioning (PC). The pathway of intracellular signal transduction during hypoxia PC has not yet been validated. On a model of hypoxia/reoxygenation (H/R) of cultured neonatal rabbit cardiomyocytes, the present study is taken to investigate the changes of mitogen-activated protein kinase (MAPK) and ribosomal S6 kinase (S6K) activity. It was found that intracellular total MAPK and nuclear MAPK, after a 15-min period of reoxygenation preceded by a single 60-min period of hypoxia, were increased by 95% and 230%, respectively. Intracellular S6K activity increased by 142% at 30 min of H/R vs the control group (P < 0.01). Phosphatase 1 (PPase 1) inhibitor (ocadaic acid, OA 1 mumol/L) augmented the increase of MAPK and S6K activity induced by H/R. However, tyrosine kinase (Tyr K) inhibitor (genistein), protein kinase C (PKC) inhibitor (H7) and preincubation of cardiomyocytes with PKC activator PMA all reduced MAPK activation by H/R. Protein kinase A (PKA) inhibitor (H89), Ca2+/Calmodulin-dependent protein kinase (PKM) inhibitor (W7) or PPase 2a inhibitor (OA 10 nmol/L) had no significant effect on MAPK and S6K activity. The above results suggested that activation of MAPK and S6K activity during hypoxia/reoxygenation there might require participation of PKC, Tyr K and PPase 1, while PKA, PKM and PPase 2a were not involved.  相似文献   

12.
Protein kinase A (PKA) stimulates Cl secretion by activating the cystic fibrosis transmembrane conductance regulator (CFTR), a tightly regulated Cl- channel in the apical membrane of many secretory epithelia. The CFTR channel is also modulated by protein kinase C (PKC), but the regulatory mechanisms are poorly understood. Here we present evidence that PKA-mediated phosphorylation alone is not a sufficient stimulus to open the CFTR chloride channel in the presence of MgATP; constitutive PKC phosphorylation is essential for acute activation of CFTR by PKA. When patches were excised from transfected Chinese hamster ovary cells, CFTR responses to PKA became progressively smaller with time and eventually disappeared. This decline in PKA responsiveness did not occur in the presence of exogenous PKC and was reversed by the addition of PKC to channels that had become refractory to PKA. PKC enhanced PKA stimulation of open probability without increasing the number of functional channels. Short-term pretreatment of cells with the PKC inhibitor chelerythrine (1 microM) reduced the channel activity that could be elicited by forskolin in cell-attached patches. Moreover, in whole cell patches, acute stimulation of CFTR currents by chlorophenylthio-cAMP was abolished by two chemically unrelated PKC inhibitors, although an abrupt, partial activation was observed after a delay of >15 min. Modulation by PKC was most pronounced when basal PKC phosphorylation was reduced by briefly preincubating cells with chelerythrine. Constitutive PKC phosphorylation in unstimulated cells permits the maximum elevation of open probability by PKA to reach a level that is approximately 60% of that attained during in vitro exposure to both kinases. Differences in basal PKC activity may contribute to the variable cAMP responsiveness of CFTR channels in different cell types.  相似文献   

13.
The neuroendocrine bag cells of Aplysia provide an excellent model system for exploring the roles of second-messenger pathways regulating peptide hormone secretion. Both the cAMP and diacylglycerol second-messenger systems and their associated protein kinases (PKA and PKC) are involved in regulating membrane excitability in bag-cell neurons of Aplysia. The purpose of the present set of experiments was to determine if PKA and PKC also play roles in regulating egg laying hormone (ELH) secretion from bag-cell neurons. Abdominal ganglia with attached bag-cell clusters and connective nerves were dissected from reproductively mature Aplysia, and ELH secretion in response to electrically stimulated afterdischarges was measured by RIA. ELH secretion from bag cells treated with protein-kinase inhibitors (Rp-cAMPS to inhibit PKA; H-7 to inhibit PKC) was compared to that from untreated controls. Our experiments showed that 100 microM Rp-cAMPS significantly attenuated ELH secretion during the nonbreeding seasons (winter and spring) of 2 consecutive years. This suggested a role for PKA in regulating ELH secretion. However, Rp-cAMPS had no effect on ELH secretion during the breeding seasons (summer and fall) of 2 consecutive years, even when the dose of Rp-cAMPS was increased to 200 microM. These findings indicate that there is a seasonal fluctuation in responsiveness to PKA inhibition. We also investigated if there was a seasonal fluctuation in the ability of the PKC inhibitor H-7 to suppress ELH secretion. During the nonbreeding season, 10-100 microM H-7 significantly inhibited ELH secretion, but during the breeding season, only the highest dose (100 microM) of H-7 inhibited ELH release. These results confirm that PKC plays a role in regulating ELH secretion and indicate that there is a seasonal fluctuation in responsiveness to PKC inhibition. Overall, our findings suggest that both the cAMP and diacylglycerol second-messenger pathways are regulated on a seasonal basis.  相似文献   

14.
Two voltage-activated calcium currents, a transient T-type and a PL-sustained type, have been measured in isolated, cultured white bass horizontal cells. These two voltage-activated calcium currents were found to be modulated by two independent second-messenger systems. Furthermore, activation of either second-messenger system led to similar changes in calcium current activity. Activation of the cyclic AMP second-messenger pathway or the sn-1,2-diacylglycerol (DAG) second-messenger system resulted in a significant decrease in the amplitude of the transient current and a simultaneous large increase in the amplitude of the sustained current. Both second-messenger systems achieved their effects through protein phosphorylation. The cyclic AMP pathway resulted in the activation of protein kinase A (PKA) and the DAG pathway worked to activate protein kinase C (PKC). Two protein kinase inhibitors were analyzed in this study for their ability to inhibit second-messenger activated protein kinase activity and separate the two pathways. The peptide cyclic AMP-dependent protein kinase inhibitor and staurosporine were found to be nonspecific at high concentrations and inhibited both second-messenger pathways. At low concentrations however, staurosporine specifically inhibited only PKC, whereas adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase inhibitor was selective for PKA. Both second-messenger systems were activated by the neuromodulator, dopamine. Thus one agonist can initiate multiple second-messenger systems leading to similar changes in voltage-activated calcium current activity. The modulatory action on calcium currents produced by one second-messenger system added to the modulatory action resulting from activation of the other second-messenger system. The effect is to alter the magnitude of the horizontal cell calcium currents.  相似文献   

15.
16.
The present study examined protein kinase A (PKA) and protein kinase C (PKC) involvement in the maintenance of cellular tolerance to mu opioid receptor agonists resulting from chronic opiate exposure in neurosecretory cells of the hypothalamic arcuate nucleus (ARC). The possibility that the diminution of mu opioid receptor/effector coupling produced by acute 17beta-estradiol or chronic opiate exposures is mediated by a common kinase pathway also was investigated. Intracellular recordings were made in hypothalamic slices prepared from ovariectomized female guinea pigs. The mu opioid receptor agonist D-Ala2, N-Me-Phe4, Gly-ol5-enkephalin (DAMGO) produced dose-dependent hyperpolarizations of ARC neurons. Chronic morphine treatment for 4 days reduced DAMGO potency 2.5-fold with no change in the maximal response. This effect was mimicked by a 20-min bath application of the PKA activator cAMP, Sp-isomer, or the PKC activator phorbol-12,13-dibutyrate. A 30-min bath application of the broad-spectrum protein kinase inhibitor staurosporine completely abolished the reduced DAMGO potency seen in morphine-tolerant neurosecretory cells, including those immunopositive for gonadotropin-releasing hormone. The effect of staurosporine was mimicked by the PKA inhibitor cAMP, Rp-isomer, but not by the PKC inhibitor calphostin C. Finally, a 20-min bath application of 17beta-estradiol did not further reduce DAMGO potency in morphine-tolerant ARC neurons. Therefore, increased PKA activity maintains cellular tolerance to mu opioid receptor agonists in ARC neurosecretory cells caused by chronic morphine treatment. Furthermore, acute 17beta-estradiol and chronic opiate treatments attenuate mu opioid receptor-mediated responses via a common PKA pathway.  相似文献   

17.
We have previously shown that direct activation of protein kinase A (PKA) and protein kinase C (PKC) induced changes in the expression of genes coding for PKA RII beta and C alpha subunit isoforms in cultured anterior pituitary cells, suggesting the possibility of interconnected regulation at this point. To evaluate whether the cell content of PKA protein subunits could be similarly altered, the catalytic (C) and regulatory type I (RI) and type II (RII) subunits were identified by Western blot analysis using specific immunoaffinity-purified antibodies. Activation of PKA by the permeant cyclic adenosine monophosphate (cAMP) analogue 8-Br-cAMP induced a dramatic time- and concentration-dependent decline of C subunit to a residual level that may represent 10-15% of that in untreated cells. The most profound decrease occurred during the first 5 h following treatment with 0.5-2 mM analogue (by 65 +/- 14 and 79 +/- 5%, respectively). Under identical conditions, RII was increased by about 40% at the higher concentrations, while RI increased slightly, but only at low concentrations (below 1 mM 8-Br-cAMP), and then gradually decreased. Exposure of cells to the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) also resulted in decreased levels of the PKA C subunit, however, with a different concentration-dependent profile. In particular, a decline in PKA C was most pronounced (60%) at a low concentration of TPA (10 nM) as compared with the concentrations equal to or above 20 nM (40% decrease). TPA at 10 nM also depressed notably (by 25%) the level of RII subunit, but higher concentrations were essentially ineffective, although a slight and statistically not significant elevation of the cell subunit content was observed as for RI. Simultaneous activation of both PKA and PKC pathways resulted in further depletion of PKA C and an important loss (50%) of RII, a subunit which was enhanced by the activation of either system alone. Finally, gonadotropin-releasing hormone, a neuropeptide that has the potentiality to activate both PKA and PKC signaling in gonadotropes, was able to alter PKA subunit cell content: PKA C was significantly reduced at either a subliminal (0.1 nM) or maximal (10 nM) concentration, whereas RII increased at the low concentration and decreased at the high concentration. In conclusion, these data demonstrate that the pituitary cell contents of RI, RII, and C subunits of PKA are regulated under the activation of PKA itself as well as PKC in a manner that can exhibit further alteration when both systems come simultaneously into play. Changes in the PKA subunit levels in certain cases may correlate with a variation of the mRNAs suggesting multiple control mechanisms, including an alteration of gene expression and changes in subunit degradation, synthesis, and/or turnover. These data, together with those obtained in the presence of gonadotropin-releasing hormone, provide further support for a hormonally induced interplay between PKA and PKC signaling pathways at the crucial level of PKA in the pituitary gland including gonadotropes.  相似文献   

18.
19.
Several protein kinases are known to phosphorylate Ser/Thr residues of certain GABAA receptor subunits. Yet, the effect of phosphorylation on GABAA receptor function in neurons remains controversial, and the functional consequences of phosphorylating synaptic GABAA receptors of adult CNS neurons are poorly understood. We used whole-cell patch-clamp recordings of GABAA receptor-mediated miniature IPSCs (mIPSCs) in CA1 pyramidal neurons and dentate gyrus granule cells (GCs) of adult rat hippocampal slices to determine the effects of cAMP-dependent protein kinase (PKA) and Ca2+/phospholipid-dependent protein kinase (PKC) activation on the function of synaptic GABAA receptors. The mIPSCs recorded in CA1 pyramidal cells and in GCs were differentially affected by PKA and PKC. In pyramidal cells, PKA reduced mIPSC amplitudes and enhanced the fraction of events decaying with a double exponential, whereas PKC was without effect. In contrast, in GCs PKA was ineffective, but PKC increased the peak amplitude of mIPSCs and also favored double exponential decays. Intracellular perfusion of the phosphatase inhibitor microcystin revealed that synaptic GABAA receptors of pyramidal cells, but not those of GCs, are continually phosphorylated by PKA and conversely, dephosphorylated, most likely by phosphatase 1 or 2A. This differential, brain region-specific phosphorylation of GABAA receptors may produce a wide dynamic range of inhibitory synaptic strength in these two regions of the hippocampal formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号