首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents a way of implementing a model-based predictive controller (MBPC) for mobile robot navigation when unexpected static obstacles are present in the robot environment. The method uses a nonlinear model of mobile robot dynamics, and thus allows an accurate prediction of the future trajectories. An ultrasonic ranging system has been used for obstacle detection. A multilayer perceptron is used to implement the MBPC, allowing real-time implementation and also eliminating the need for high-level data sensor processing. The perceptron has been trained in a supervised manner to reproduce the MBPC behaviour. Experimental results obtained when applying the neural-network controller to a TRC Labmate mobile robot are given in the paper.  相似文献   

2.
In this paper, two intelligent techniques for a two‐wheeled differential mobile robot are designed and presented: A smart PID optimized neural networks based controller (SNNPIDC) and a PD fuzzy logic controller (PDFLC). Basically, mobile robots are required to work and navigate under exigent circumstances where the environment is hostile, full of disturbances such as holes and stones. The robot navigation leads to an autonomous decision making to overcome an obstacle and/or to stop the engine to protect it. In fact, the actuators that drive the robot should in no way be damaged and should stop to change direction in case of insurmountable disturbances. In this context, two controllers are implemented and a comparative study is carried out to demonstrate the effectiveness of the proposed approaches. For the first one, neural networks are used to optimize the parameters of a PID controller and for the second a fuzzy inference system type Mamdani based controller is adopted. The goal is to implement control algorithms for safe robot navigation while avoiding damage to the motors. In these two control cases, the smart robot has to quickly perform tasks and adapt to changing environment conditions while ensuring stability and accuracy and must be autonomous with regards to decision making. Simulations results aren't done in real environments, but are obtained with the Matlab/Simulink environment in which holes and stones are modeled by different load torques and are applied as disturbances on the mobile robot environment. These simulation results and the robot performances are satisfactory and are compared to a PID controller in which parameters are tuned by the Ziegler–Nichols tuning method. The applied methods have proven to be highly robust.  相似文献   

3.
This paper shows how to improve the robustness of mobile robot path tracking when predictive control algorithms are used. When uncertainties in a mobile robot are considered, it is shown how the classical generalised predictive controller (GPC) may lead to an unstable behaviour of the mobile robot. The equivalence between the GPC and a structure composed by an optimal predictor and a classical controller is given, and it is shown that use of a Smith predictor instead of an optimal predictor increases the robustness of the system. A new strategy, the Smith-predictor-based GPC, is proposed. Experimental tests carried out on a LABMATE mobile robot validate the performance of the proposed controller.  相似文献   

4.
In this paper, a nonlinear controller design for an omni-directional mobile robot is presented. The robot controller consists of an outer-loop (kinematics) controller and an inner-loop (dynamics) controller, which are both designed using the Trajectory Linearization Control (TLC) method based on a nonlinear robot dynamic model. The TLC controller design combines a nonlinear dynamic inversion and a linear time-varying regulator in a novel way, thereby achieving robust stability and performance along the trajectory without interpolating controller gains. A sensor fusion method, which combines the onboard sensor and the vision system data, is employed to provide accurate and reliable robot position and orientation measurements, thereby reducing the wheel slippage induced tracking error. A time-varying command filter is employed to reshape an abrupt command trajectory for control saturation avoidance. The real-time hardware-in-the-loop (HIL) test results show that with a set of fixed controller design parameters, the TLC robot controller is able to follow a large class of 3-degrees-of-freedom (3DOF) trajectory commands accurately.  相似文献   

5.
轮式移动机器人是一种典型的非完整约束系统.基于反步法提出一种自适应扩展控制器,对含有未知参数的非完整轮式移动机器人动力学系统进行轨迹跟踪控制并且Lyapunov稳定性理论保证跟踪误差渐近收敛到零.为了克服速度跳变产生滑动,加入了神经动力学模型对控制器进行改进.以两驱动轮移动机器人为例,利用运动学自适应控制器设计出转矩控制器,有效解决了不确定非完整轮式移动机器人动力学系统的轨迹跟踪问题.仿真结果证明该方法的正确性和有效性.  相似文献   

6.
A variety of approaches for path tracking control of wheeled mobile robots have been implemented. While most of these are based on controlling the robot dynamics, they are not applicable if the robot dynamics are inaccessible. In this paper, a fuzzy logic controller (FLC) for the path tracking of a wheeled mobile robot based on controlling the robot at a higher level is presented. The controller is highly robust and flexible and automatically follows a sequence of discrete waypoints, and no interpolation of the waypoints is needed to generate a continuous reference trajectory. The speeds are varied depending on the variations in the path and on the posture of the robot. The heuristic rules of the FLC are based on an analogy with a human driving a car and the optimization of the controller is based on experimentation. The implementation on a P3-AT mobile robot shows the effectiveness of the proposed approach.  相似文献   

7.
In this paper, an embedded fuzzy controller for a nonholonomic mobile robot is developed. The mobile robot was built based on the behavior-based artificial intelligence, where several levels of competences and behaviors are implemented. A class of fuzzy control laws is formulated using the Lyapunov's direct method, which can guarantee the convergence of the steering errors. Theoretical analysis of the fuzzy control algorithms for steering control of the mobile robot is performed. The requirements for a suitable rule base selection in the proposed fuzzy controller are provided, which can guarantee the asymptotical stability of the system. Simulation and experimental studies are conducted to investigate the performance of the proposed fuzzy controller. It can achieve the desired turn angle and make the mobile robot follow the target trajectory satisfactorily.  相似文献   

8.
This paper presents a control strategy for the coordination of multiple mobile robots. A combination of the virtual structure and path following approaches is used to derive the formation architecture. A formation controller is proposed for the kinematic model of two-degree-of-freedom unicycle-type mobile robots. The approach is then extended to consider the formation controller by taking into account the physical dimensions and dynamics of the robots. The controller is designed in such a way that the path derivative is left as a free input to synchronize the robot’s motion. Simulation results with three robots are included to show the performance of our control system. Finally, the theoretical results are experimentally validated on a multi-robot platform.  相似文献   

9.
This paper develops a fuzzy logic based position controller whose membership functions are tuned by genetic algorithm. The main goal is to ensure successful velocity and position trajectories tracking between the mobile robot and the virtual reference cart. The proposed fuzzy controller has two inputs and two outputs. The first input represents the distance between the mobile robot and the reference cart. The second input is the angle formed by the straight line defined with the orientation of the robot, and the straight line that connects the robot with the reference cart. The outputs represent linear and angular velocity commands, respectively. The performance of the fuzzy controller is validated through comparison with previously developed mobile robot position controller based on control Lyapunov functions (CLF). Simulation results indicate good performance of position tracking while at the same time a substantial reduction of the control torques is achieved.  相似文献   

10.
In this paper, a model-predictive trajectory-tracking control applied to a mobile robot is presented. Linearized tracking-error dynamics is used to predict future system behavior and a control law is derived from a quadratic cost function penalizing the system tracking error and the control effort. Experimental results on a real mobile robot are presented and a comparison of the control obtained with that of a time-varying state-feedback controller is given. The proposed controller includes velocity and acceleration constraints to prevent the mobile robot from slipping and a Smith predictor is used to compensate for the vision-system dead-time. Some ideas for future work are also discussed.  相似文献   

11.
本文针对全方位移动机器人轨迹追踪中的摩擦补偿问题,提出了一种改进的非线性自抗扰控制器.首先建立了含有经典静态摩擦模型的全方位移动机器人动力学模型.其次,基于该模型设计非线性控制器和线性扩张状态观测器并给出了系统的稳定性分析.通过将模型已知项加入线性扩张状态观测器中得到摩擦力的估计值,并将估计值用于非线性控制器中摩擦补偿部分.为减小摩擦力对机器人低速运动轨迹追踪控制的影响,非线性控制器采用变增益控制器进行轨迹追踪控制.最后通过仿真结果验证本文提出控制器的有效性.  相似文献   

12.
This paper presents a stable switching control strategy for the parking problem of non-holonomic mobile robots. First, it is proposed a positioning-orientation switching controller for the parking problem. With this strategy robot backwards motions are avoided and the robot heading is always in the direction of the goal point facilitating the obstacle handling. Second, the avoidance of unexpected obstacles is considered in a reactive way by following the contour of the obstacles. Next, the stability of the switching parking/obstacle-avoider controller is analyzed showing stability under reasonable conditions. Finally, the good performance and the feasibility of this approach are shown through several experimental results.  相似文献   

13.
The paper describes a smooth controller of an articulated mobile robot with switching constraints. The use of switching constraints associated with grounded/lifted wheels is an effective method of controlling various motions; e.g. the avoidance of a moving obstacle. A model of an articulated mobile robot that has active and passive wheels and active joints with switching constraints is derived. A controller that accomplishes the trajectory tracking of the robot’s head and subtasks using smooth joint input is proposed on the basis of the model. Simulations and experiments are presented to show the effectiveness of the proposed controller.  相似文献   

14.
This paper presents the application of a hybrid controller to the optimization of the movement of a mobile robot. Through hybrid controller processes, the optimal angle and velocity of a robot moving in a work space was determined. More effective movement resulted from these hybrid controller processes. The experimental scenarios involved a five-versus-five soccer game and a MATLAB simulation, where the proposed system dynamically assigned the robot to the target position. The hybrid controller was able to choose a better position according to the circumstances encountered. The hybrid controller that is proposed includes a support vector machine and a fuzzy logic controller. We used the method of generalized predictive control to predict the target position, and the support vector machine to determine the optimal angle and velocity required for the mobile robot to reach the goal. First, we used the generalized predictive control to predict the target position. Then, the support vector machine is used to classify the angle that must be followed by the mobile robot to reach the goal. Next, a fuzzy logic controller is designed to determine the velocity of the left and right wheels of the mobile robot. Thus generated, the velocity was optimized according to the measures obtained by the support vector machine. Finally, based on the optimal velocity of robot, the output membership function was modified. Consequently, the proposed hybrid controller allowed the robot to reach the goal quickly and effectively.  相似文献   

15.
This paper describes a control method for mobile robots represented by a nonlinear dynamical system, which is subjected to an output deviation caused by drastically changed disturbances. We here propose some controllers in the framework of neuro-interface. It is assumed that a neural network (NN)-based feedforward controller is construcetd by following the concept of virtual master-slave robot, in which a virtual master robot as a feedforward controller is used to control the slave (i.e., actual) robot. The whole system of the present neuro-interface consists of an NN-based feedforward controller, a feedback PD controller and an adaptive fuzzy feedback compensator. The NN-based feedforward controller is trained offline by using a gradient method, the gains of the PD controller are to be chosen constant, and the adaptive fuzzy compensator is constructed with a simplified fuzzy reasoning. Some simulations are presented to confirm the validity of the present approach, where a nonholonomic mobile robot with two independent driving wheels is assmued to have a disturbance due to the change of mass for the robot.  相似文献   

16.
张金学  李媛媛 《电脑学习》2012,2(1):53-55,58
轮式机器人是一个典型的非完整性系统。由于非线性和非完整特性,很难为移动机器人系统的轨迹跟踪建立一个合适的模型。介绍了一种轮式机器人滑模轨迹跟踪控制方法。滑模控制是一个鲁棒的控制方法,能渐近的按一条所期望的轨迹稳定移动机器人。以之为基础,描述了轮式机器人的动力学模型并在二维坐标下建立了运动学方程,根据运动学方程设计滑模控制器,该控制器使得机器人的位置误差收敛到零。  相似文献   

17.
Recently, there has been extensive work on the construction of fuzzy controllers for mobile robots by a genetic algorithm (GA); therefore, we can realize evolutionary optimization as a promising method for developing fuzzy controllers. However, much investigation on the evolutionary fuzzy controller remains because most of the previous works have not seriously attempted to analyze the fuzzy controller obtained by evolution. This paper develops a fuzzy logic controller for a mobile robot with a GA in simulation environments and analyzes the behaviors of the controller with a state transition diagram of the internal model. Experimental results show that appropriate control mechanisms of the fuzzy controller are obtained by evolution. The controller has evolved wen enough to smoothly drive the robot in different environments. The robot produces emergent behaviors by the interaction of several fuzzy rules obtained.  相似文献   

18.
文章针对遥操作移动机器人的人机界面、远程通讯和合作控制问题进行研究,以促进遥操作移动机器人在现实环境中的应用为目的,设计和实现了一个具有友好的人机界面、方便的通讯方式和控制灵活稳定的遥操作移动机器人。实验证明,该系统运行平稳可靠,控制灵活,可用于危险环境下的任务执行。  相似文献   

19.
Homography-based visual servo regulation of mobile robots.   总被引:2,自引:0,他引:2  
A monocular camera-based vision system attached to a mobile robot (i.e., the camera-in-hand configuration) is considered in this paper. By comparing corresponding target points of an object from two different camera images, geometric relationships are exploited to derive a transformation that relates the actual position and orientation of the mobile robot to a reference position and orientation. This transformation is used to synthesize a rotation and translation error system from the current position and orientation to the fixed reference position and orientation. Lyapunov-based techniques are used to construct an adaptive estimate to compensate for a constant, unmeasurable depth parameter, and to prove asymptotic regulation of the mobile robot. The contribution of this paper is that Lyapunov techniques are exploited to craft an adaptive controller that enables mobile robot position and orientation regulation despite the lack of an object model and the lack of depth information. Experimental results are provided to illustrate the performance of the controller.  相似文献   

20.
Among control problems for mobile robots, point‐to‐point stabilization is the most challenging since it does not admit designs with smooth static state feedback laws. Stabilization strategies for mobile robots, and nonholonomic systems generally, are smooth, time‐varying or nonsmooth, time‐invariant. Time‐varying control strategies are designed with umdamped linear oscillators but their fixed structure offer limited flexibility in control design. The central theme of this paper lies in use of nonlinear oscillators for mobile robot control. Large numbers of qualitatively different control strategies can be designed using nonlinear oscillators since stiffness and damping can be functions of robot states. We demonstrate by designing two fundamentally different controllers for two‐wheeled mobile robot using two variants of a particular nonlinear oscillator. First controller is dynamic and generates smooth control action. Second controller is almost‐smooth and time‐invariant. While first controller guarantees global asymptotic stability for any desired posture of robot, second controller is stable, and converges robot from almost any posture to desired posture. The only gap in posture space is unstable equilibrium manifold of measure zero. For both control strategies we mathematically establish stability and convergence of mobile robot to desired posture. Simulation results support theoretical claims. ©1999 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号