首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The energy levels, oscillator strengths, line strengths, and transition probabilities for transitions among the terms belonging to the 3s23p2, 3s3p3, 3s23p3d, 3s23p4s, 3s23p4p and 3s23p4d configurations of silicon-like ions (Zn XVII, Ga XVIII, Ge XIX, and As XX) have been calculated using the configuration-interaction code CIV3. The calculations have been carried out in the intermediate coupling scheme using the Breit–Pauli Hamiltonian. The present calculations have been compared with the available experimental data and other theoretical calculations. Most of our calculations of energy levels and oscillator strengths (in length form) show good agreement with both experimental and theoretical data. Lifetimes of the excited levels have also been calculated.  相似文献   

2.
Energy levels, line strengths, oscillator strengths, radiative decay rates, and fine-structure collision strengths are presented for the Zn-like ions Nb XII and Mo XIII. The atomic data are calculated with the AUTOSTRUCTURE code, where relativistic corrections are introduced according to the Breit–Pauli distorted wave approach. We present the calculations of atomic data for 110 fine-structure levels generated from fifteen configurations (1s22s22p63s23p63d10)4s2, 4s4p, 4p2, 4s4d, 4s4f, 4s5s, 4p4d, 4s5p, 4s5d, 4p4f, 4p5s, 4d2, 4d4f, 4f2, and 3d94s24p. Fine-structure collision strengths for transitions from the ground and the first four excited levels are presented at six electron energies (20, 50, 80, 110, 150, and 180 Ryd). Our atomic structure data are compared with the available experimental and theoretical results.  相似文献   

3.
Energy levels, oscillator strengths, and transition probabilities for transitions among the 14 LS states belonging to configurations of sulfur-like iron, Fe XI, have been calculated. These states are represented by configuration interaction wavefunctions and have configurations 3s23p4, 3s3p5, 3s23p33d, 3s23p34s, 3s23p34p, and 3s23p34d, which give rise to 123 fine-structure energy levels. Extensive configuration interaction calculations using the CIV3 code have been performed. To assess the importance of relativistic effects, the intermediate coupling scheme by means of the Breit–Pauli Hamiltonian terms, such as the one-body mass correction and Darwin term, and spin–orbit, spin–other-orbit, and spin–spin corrections, are incorporated within the code. These incorporations adjusted the energy levels, therefore the calculated values are close to the available experimental data. Comparisons between the present calculated energy levels as well as oscillator strengths and both experimental and theoretical data have been performed. Our results show good agreement with earlier works, and they might be useful in thermonuclear fusion research and astrophysical applications.  相似文献   

4.
Energy levels, transition probabilities, oscillator strengths, line strengths, and lifetimes have been calculated for silicon-like manganese and germanium, Mn XII and Ge XIX. The configurations 3s23p2, 3s3p3, 3s23p3d, 3s3p23d, and 3p4 were used in the calculations and 88 fine-structure levels were obtained. The fully relativistic GRASP code has been adopted, and results are reported for all electric dipole, electric quadrupole, magnetic dipole, and magnetic quadrupole transitions among levels of Mn XII and Ge XIX. Comparisons have been made with available theoretical and experimental results.  相似文献   

5.
We present an extensive, ab initio configuration interaction calculation of oscillator strengths, transition probabilities, and lifetimes of the upper levels of all transitions in Ti VI between the levels of 3s23p5, 3s3p6, 3p43d, 3p44s, 3p44p and 3p44d states in the LSJ coupling scheme. Relativistic effects are incorporated by adding the mass correction, Darwin, and spin-orbit interaction terms to the non-relativistic Hamiltonian in the Breit-Pauli approximation. The calculations incorporate the major correlation effects. The calculated energy levels are in close agreement with most of the NIST tabulation. However, some discrepancies in the energy positions with experimental energies occur in levels with 3p43d 1D and 3P cores, particularly belonging to 2P and 2D symmetries. We predict new data for several levels where no other theoretical and/or experimental results are available. Our extensive calculations will be useful to experimentalists in identifying the fine-structure levels in their future work.  相似文献   

6.
Non-orthogonal orbitals in the multiconfiguration Hartree-Fock approach are used to calculate line strengths, oscillator strengths and transition probabilities for E1 transitions among the fine-structure levels of the 3s23p3, 3s3p4, 3s23p23d, 3s3p33d, 3p5 and 3s23p3d2 configurations in Fe XII and 3s23p, 3s3p2, 3s23d, 3p3, 3s3p3d, 3p23d, 3s3d2, 3p3d2, 3s24s, 3s24p, 3s3p4s and 3s24d configurations in Fe XIV. The lifetimes of excited levels belonging to these configurations of Fe XII and Fe XIV are also presented. An accurate representation of the levels has been obtained using spectroscopic and correlation radial functions. The wavefunctions exhibit large correlations and significant dependence of one-electron valence orbitals due to both the total and intermediate terms. The relativistic corrections are included through the one-body and two-body operators in the Breit-Pauli Hamiltonian. Progressively larger calculations are performed to check for important electron correlation contributions and for convergence of results. The atomic wavefunctions give excitation energies which are in close agreement with experiment. The present oscillator strengths and transition probabilities compare very well with previous large scale calculations.  相似文献   

7.
A large-scale configuration interaction (CI) calculation using CIV3 is performed for the 303 fine-structure levels of the aluminum-like titanium ion. We have calculated the energy levels, oscillator strengths, and transition probabilities for the electric dipole allowed and intercombination transitions among the levels of ground state 3s23p (2po) and higher energy levels of states 3s3p2, 3p3, 3s3p3d, 3p23d, 3s24s, 3s3d2, 3s24p, 3s3p4s, 3s3p4p, 3p3d2, 3s3p4d, 3s3p4f, 3s25p, 3p24p, 3s3d4s, 3s3p5s, 3s3d4p, 3s3p5p, 3s2(4d, 4f, 5s, 5d, 5f, 6s, 6p, 6d, 6f) of Ti X in the LSJ coupling scheme. The calculations include all the major correlation effects. We attempt to correct the inaccuracies in the CI coefficients in the wavefunctions, which would lead to inaccuracies in transition probabilities by applying a “fine-tuning” technique. The relativistic effects are incorporated by adding the mass correction, Darwin, and spin-orbit interaction terms into the non-relativistic Hamiltonian in the Breit-Pauli approximation. The present results are in good agreement with other available calculations and experiments. Several new lines corresponding to 3s3pnl (n = 4, 5 and l = 0, 1), 3s25p, 3s2(6s, 6p) and other configurations are predicted where no other theoretical or experimental results are available. We expect that our extensive calculations will be useful to experimentalists in identifying the fine-structure levels in their future work.  相似文献   

8.
We have calculated fine-structure energy levels, oscillator strengths and transition probabilities for transitions among the terms belonging to the 1s22s22p6ns (2S), 1s22s22p6np (2P), 1s22s22p6nd (2D) (n = 3, 4, 5), and 1s22s22p6nf (2F) (n = 4, 5) configurations. The calculations are based upon the general configuration-interaction code CIV3 of Hibbert which uses orthonormal orbitals of radial functions expressed as superpositions of normalized Slater-type orbitals. Our calculated values are compared with experimental and other theoretical results where a satisfactory agreement is found. We also report on some unpublished energy values and oscillator strengths.  相似文献   

9.
An ab initio study of aluminum-like calcium is presented. The calculations are performed within the configuration interaction method in the basis of transformed radial orbitals with a variable parameter. Relativistic effects are accounted for within the Breit-Pauli approximation. Energy spectra, transition characteristics and lifetimes of excited levels of configurations 3s23p, 3s3p2, 3s23d, 3p3, 3s3p3d, 3p23d, 3s24s, 3s24p, 3s24d, 3s24f, 3s3p4s, and 3s3p4p are obtained. The results are compared with available experimental and theoretical data.  相似文献   

10.
Energy levels, transition probabilities, oscillator strengths, line strengths, and lifetimes have been calculated for Oxygen-like Gallium, Ga XXIV. The configurations 2s22p4, 2s2p5, 2p6, 2s2p43?, 2s22p33?, and 2p53? were used in calculations and 226 fine-structure levels were obtained. The fully relativistic GRASP code has been adopted, and results are reported for all electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) transitions among the lowest 226 levels of Ga XXIV, belonging to the n≤3 configurations. Comparisons have been made with earlier available theoretical and experimental results.  相似文献   

11.
Energy levels, wavelengths, transition probabilities, and oscillator strengths have been calculated for Ge-like Kr, Mo, Sn, and Xe ions among the fine-structure levels of terms belonging to the ([Ar] 3d10)4s24p2, ([Ar] 3d10)4s 4p3, ([Ar] 3d10)4s24p 4d, and ([Ar] 3d10)4p4 configurations. The fully relativistic multiconfiguration Dirac-Fock method, taking both correlations within the n=4 complex and the quantum electrodynamic effects into account, have been used in the calculations. The results are compared with the available experimental and other theoretical results.  相似文献   

12.
Ab initio energy spectra of the ground configuration 2s22p4, the excited configurations 2s2p5, 2p6, 2s22p33s, 2s22p33p, 2s22p33d, 2s2p43s, 2s2p43p, and 2s2p43d of oxygen-like chromium Cr XVII have been calculated using the configuration interaction method. The wavelengths, oscillator strengths and the emission transition probabilities from configurations 2s22p33l and 2s2p43l are obtained. The radiative lifetimes of excited levels are also presented.  相似文献   

13.
Energy levels, oscillator strengths, and electron impact collision strengths have been calculated for Ni-like ions of Nd (Z = 60), Sm (Z = 62), Eu (Z = 63), Gd (Z = 64), Ta (Z = 73), and W (Z = 74) among the 249 levels belonging to the ([Ne])3s23p63d10, 3s23p63d9nl, 3s23p53d10nl, 3s3p63d10nl (n = 4, 5; l = 0, 1, … , n − 1) configurations. Configuration interactions among these configurations have been included in the calculations. Collision strengths have been obtained at 20 scattered electron energies (5–20,000 eV) and they have been listed at six representative energies of 100, 400, 1000, 2500, 5000, and 10,000 eV in this work. Effective collision strengths have been obtained by assuming a Maxwellian electron velocity distribution at 24 temperatures ranging from 100 to 3000 eV. Our results are compared with those available in the literature. The relative difference is within 0.3% between our calculated energy levels and the corresponding experimental values wherever available. The energy levels are expected to be be accurate within 0.6%, while oscillator strengths and collision strengths for strong transitions are probably accurate to better than 20%. The complete dataset is available electronically from http://www.astronomy.csdb.cn/EIE/.  相似文献   

14.
An extensive set of oscillator strengths, line strengths, and radiative decay rates for the allowed and forbidden transitions in Fe XIX is presented. They correspond to 1626 fine structure levels of total angular momenta 0≤J≤8 of even and odd parities with 2≤n≤10, 0≤l≤9, 0≤L≤10, and (2S+1)=1, 3, 5. In contrast, the compiled table of the National Institute for Standards and Technology (NIST) lists only 63 observed levels. A total of 289,291 electric dipole allowed transitions are presented. They were obtained in the close coupling approximation using the relativistic Breit-Pauli R-matrix method. The wavefunction expansion included 15 levels of the configurations 2s22p3, 2s2p4, and 2p5 of the Fe XX core. The calculated fine structure levels are assigned with spectroscopic identifications using quantum defect analysis. Comparison with the observed energies shows very good agreement, the largest difference being less than 4%. The transitions also compare well with the compiled data by NIST and recent calculations. The forbidden transitions of the electric quadrupole and octupole, and magnetic dipole and quadrupole, type are presented for the 379 levels of the configurations 2s22p4, 2s2p5, 2p6, 2s22p33s, 2s22p33p, 2s22p33d, 2s22p34s, 2s22p34p, 2s22p34d, 2s22p34f, 2s2p43s, 2s2p43p, 2s2p43d, 2s2p44s, 2s2p44p, and 2s22p23s2 of Fe XIX. They correspond to a total of 66,619 transitions. These results have been obtained from relativistic Breit-Pauli atomic structure calculations using the program SUPERSTRUCTURE. The forbidden transition probabilities show very good agreement with those compiled by NIST.  相似文献   

15.
Electron impact collision strengths, energy levels, oscillator strengths, and spontaneous radiative decay rates are calculated for Ni XIV. We include in the calculations all the configurations belonging to the n=3 complex, and provide data for the lowest 143 fine-structure levels, belonging to the configurations 3s23p3, 3s3p4, 3s23p23d, 3p5, 3s3p33d, and 3s23p3d2. Collision strengths are calculated at six incident energies for all transitions: 0.112, 8.07, 21.3, 43.4, 80.3, and 141.8 Ry above the threshold of each transition. Calculations have been carried out using the Flexible Atomic Code. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates of the present work, statistical equilibrium equations for level populations are solved at electron densities covering the range of 108-1014 cm−3 and at an electron temperature of , corresponding to the maximum abundance of Ni XIV. Spectral line intensities are calculated, and their diagnostic relevance is discussed. This data set is available in version 6.0 of the CHIANTI database.  相似文献   

16.
We present accurate oscillator strengths, line strengths and radiative rates for 1073 E1 transitions among the 86 levels belonging to 2s22p4, 2s2p5, 2p6, and 2s22p3(4So, 2Do, 2Po)3? configurations in Mg V. We have used 1s and 2s Hartree-Fock orbitals, re-optimized 2p on 2p3(2Do)3s 3Do and optimized 3s,3p,3d orbitals on real states. Sixteen additional orbitals up to 8d are optimized either as a correction to n = 3 physical orbitals or as a correlation orbital. A very large set of configurations including up to three electron promotions are used to account for all important correlation effects. All of the main five terms in the Breit-Pauli operator (except the orbit-orbit interaction) are included in order to account for the relativistic effects. Small adjustments to the diagonal elements of the Hamiltonian matrix are made to bring the calculated energies within a few cm−1 of the corresponding NIST recommended data wherever available. The calculated oscillator strengths, line strengths, and radiative rates for almost all of the E1 transitions show excellent agreement with the corresponding MCDF results of Fischer. The recent results of Bhatia et al. are found to be consistently higher by 20-45%. The accuracy of the present calculation is considered to be better than the NIST accuracy ratings for various transitions.  相似文献   

17.
The energy levels, spontaneous radiative decay rates, and electron impact collision strengths are calculated for Xe XXVII. The data refer to 107 fine-structure levels belonging to the configurations (1s22s22p6)3s23p63d10, 3s23p63d94l, 3s23p53d104l and 3s3p63d104l (l = s, p, d, f). The collision strengths are calculated with a grid of 20 collision energies between 10 and 1500 eV in terms of the energy of the scattered electron, by using the distorted-wave approximation. Effective collision strengths are obtained at six temperatures, Te (eV) = 10, 100, 300, 500, 800 and 1500, by integrating the collision strengths over a Maxwellian electron distribution. Coupled with these atomic data, a hydrodynamic code MED103 can be used to simulate the Ni-like Xe X-ray laser.  相似文献   

18.
The energy levels, oscillator strengths, and electron impact collision strengths are calculated for the Xe10+ ion using the configuration interaction scheme implemented by the Flexible Atomic Code. These data pertain to the 3917 levels belonging to the following configurations: 4s24p64d8, 4s24p64d74f, 4s24p64d75l (l = s, p, d, or f), 4s24p54d9, 4s24p54d84f, 4s24p54d85l, 4s24p64d65s5p, 4s24p64d65p5d. Configuration interactions among these configurations are included in the calculation. Collision strengths are obtained at 10 scattered electron energies (1-1000 eV) and are tabulated here at five representative energies of 10, 50, 100, 500, and 1000 eV. Effective collision strengths are obtained by assuming a Maxwellian electron velocity distribution at 10 temperatures ranging from 10 to 100 eV, and are tabulated at five representative temperatures of 10, 30, 50, 70 and 100 eV in this work. The whole data set should be useful for research involving extreme ultraviolet emission from Xe10+.  相似文献   

19.
Energy levels and radiative rates are reported for transitions in Br-like tungsten, W XL, calculated with the general-purpose relativistic atomic structure package (grasp). Configuration interaction (CI) has been included among 46 configurations (generating 4215 levels) over a wide energy range up to 213 Ryd. However, for conciseness results are only listed for the lowest 360 levels (with energies up to ∼43 Ryd), which mainly belong to the 4s24p5,4s24p44d,4s24p44f,4s4p6,4p64d,4s4p54d,4s24p34d2, and 4s24p34d4f configurations, and provided for four types of transitions, E1, E2, M1, and M2. Comparisons are made with existing (but limited) results. However, to fully assess the accuracy of our data, analogous calculations have been performed with the flexible atomic code, including an even larger CI than in grasp. Our energy levels are estimated to be accurate to better than 0.02 Ryd, whereas results for radiative rates (and lifetimes) should be accurate to better than 20% for a majority of the strong transitions.  相似文献   

20.
Energy levels and radiative rates are reported for transitions in Cl-like W LVIII. Configuration interaction (CI) has been included among 44 configurations (generating 4978 levels) over a wide energy range up to 363 Ryd, and the general-purpose relativistic atomic structure package (grasp) adopted for the calculations. Since no other results of comparable complexity are available, calculations have also been performed with the flexible atomic code (fac), which help in assessing the accuracy of our results. Energies are listed for the lowest 400 levels (with energies up to ∼98 Ryd), which mainly belong to the 3s23p5, 3s3p6, 3s23p43d, 3s23p33d2, 3s3p43d2, 3s23p23d3, and 3p63d configurations, and radiative rates are provided for four types of transitions, i.e. E1, E2, M1, and M2. Our energy levels are assessed to be accurate to better than 0.5%, whereas radiative rates (and lifetimes) should be accurate to better than 20% for a majority of the strong transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号