首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
钟兵 《热加工工艺》2012,41(13):127-129
运用DEFORM-3D有限元分析软件模拟了AZ31镁合金保温杯内筒反挤压过程,分析了温度和挤压速度对AZ31镁合金反挤压过程中的等效应力、挤压力的影响。模拟结果表明:凸模圆角处的等效应力值最大;随着温度的升高,所需要的最大挤压力变小;挤压速度越大,最大挤压力越大。  相似文献   

2.
采用连续挤压方法可以实现AZ31镁合金变形,变形条件是决定AZ31镁合金连续挤压成形的关键因素.利用DEFORM3D软件,模拟AZ31镁合金在250型连续挤压机上生产Φ7mm杆的成形过程,建立AZ31镁合金线连续挤压的刚粘塑性有限元模型,分析了连续挤压成形过程不同阶段的温度,等效应力应变变化.研究表明,变形金属的等效应力最高值出现在压实轮下方;温度最高值出现在型腔内;等效应变最大值出现在模具入口处.模拟结果对生产中制定合适的工艺和工模具的设计起到指导作用.  相似文献   

3.
基于伺服压力机的AZ31镁合金反挤压成形   总被引:1,自引:0,他引:1  
为探讨挤压速度模式对AZ31镁合金杯形件反挤压成形的影响,对伺服压力机反挤压成形进行有限元分析与实验,并与普通曲柄压力机和液压机反挤压成形进行比较。有限元分析结果表明,反挤压终了阶段,伺服挤压和液压挤压最大损伤值分别为3.41和3.30,远低于普通挤压的最大损伤值6.08;挤压过程中杯形件最大温差伺服挤压为45℃,而普通挤压和液压挤压分别为127℃和70℃。实验结果表明,在1100kN伺服压力机上,采用伺服挤压模式,可成功获得壁厚为3mm的AZ31镁合金反挤压杯形件,而采用普通挤压模式,在杯形件边缘则出现破裂。实验与有限元分析结果基本吻合。  相似文献   

4.
根据AZ31镁合金流动应力-应变曲线建立了材料模型,应用Deform-3D软件对AZ31镁合金薄壁管材反挤压过程进行了有限元模拟,分析了挤压过程中坯料和管材内部温度场、损伤因子及流动速率的分布情况,着重探讨了不同挤压温度、挤压速度和模角对最高温升、等效应力、流动速率及挤压力峰值的影响。结果表明,AZ31镁合金薄壁管材反挤压的最佳工艺参数:挤压温度为310℃、挤压速度为1mm/s、模角为60°。  相似文献   

5.
AZ31镁合金管材挤压成形数值模拟研究   总被引:2,自引:1,他引:2  
根据等温压缩实验所得AZ31镁合金应力一应变数据,拟合出材料温成形应力一应变曲线,应用有限元法模拟AZ31镁合金管材的挤压成形,着重探讨了AZ31镁合金挤压成形过程中,温度、速度、润滑等因素对金属流动的影响,为管类零件挤压成形工艺提供了科学依据。  相似文献   

6.
AZ31镁合金管材挤压过程的数值模拟   总被引:1,自引:2,他引:1  
采用Gleeble1500热模拟机对于不同温度和变形速率下的AZ31镁合金的变形性能进行了研究。通过实验得到真实应力的关系式及真实应变关系式,进而得到真实应力-应变曲线。以此为基础,采用DEFORM-3D软件,对不同壁厚管材的成形的过程进行模拟,发现在挤压时,管材内壁的金属比外壁的金属流动快,挤压筒与圆锥面过渡处的等效应变值最大等现象,分析了产生的原因,并通过工艺试验验证了模拟分析的正确性。  相似文献   

7.
采用DEFORM-2D对AZ31镁合金的挤压变形过程进行了数值模拟。通过设计实验验证了所选材料应力-应变、摩擦系数和换热系数等参数的可靠性。在此基础之上,对一系列不同挤压过程进行了模拟计算分析,得到了坯料温度场分布、应力场分布及挤压载荷等一系列数据,并采用Matlab软件对不同工艺参数与形变载荷之间的关系进行了四维描述。  相似文献   

8.
《塑性工程学报》2020,(1):123-130
以宽幅AZ31镁合金板材为研究对象,采用有限元软件DEFORM-2D对镁合金的挤压-剪切变形过程进行数值模拟。基于Normalized C&L断裂准则,研究了镁合金在挤压-剪切变形过程中损伤积累及分布情况,分别从模具结构和工艺参数的角度进行模拟分析。模拟结果表明,坯料损伤值随着模具拐角数目的增加而快速增长,最大损伤区主要集中在板材下表面。通过添加背压及增大模具内拐角区圆角半径可以有效地降低损伤值,改善坯料内部损伤分布。增大坯料与模具之间的摩擦能够促使大损伤区逐渐向坯料头部集中,从而提高材料利用率。而挤压温度和挤压速度对坯料损伤值的影响不大。  相似文献   

9.
基于DEFORM-3D平台,以军用战地发射塔天线用AZ31镁合金薄壁管分流挤压工艺过程为研究对象,研究建立了精确、高效的AZ31镁合金薄壁管分流挤压有限元模型。模拟研究揭示了挤压速度对挤压力、焊合压力及模口坯料金属峰值温度的影响规律。基于所得规律,综合考虑挤压力、焊合质量及挤出管材表面质量要求,获得了该规格AZ31镁合金薄壁管在2000t挤压机上的合理挤压速度范围为3.5~7mm/s。  相似文献   

10.
AZ31镁合金挤压模拟与实验研究   总被引:2,自引:2,他引:2  
采用有限元模拟和实验验证相结合的方法对AZ31镁合金十字型材挤压过程进行研究。研究发现,有限元模拟能够较真实地反映镁合金挤压变形过程中的热力学参数分布和演变情况。同时发现,通过调整挤压速度能使镁合金挤压出口温度维持在较小范围内波动,从而解决镁合金变形温度范围窄的问题,保证制品沿长度方向的组织性能和尺寸精度稳定。  相似文献   

11.
通过Gleeble-1500D热模拟机获得AZ31镁合金的应力-应变曲线,采用DEFORM-3D软件对其变通道角(CCAE)挤压过程进行了模拟,并分析了不同挤压比对挤压过程的应力和应变影响.结果表明,挤压比越大,所需的挤压力越大,且挤压后期挤压力减少比例越大,材料动态再结晶的程度越高.随着挤压比的增大,表面质量反而逐渐增高,试样平均等效应变成线性增大.  相似文献   

12.
镁合金板材挤压工艺参数较难控制,挤压温度与挤压速度的合理匹配是挤压成功与否的关键.以宽度700 mm、厚度4 mm的AZ31B镁合金薄板为研究对象,基于Forge软件和Normalized Crockroft&Latham断裂准则对其挤压过程进行了模拟.结果表明,挤压初期,铸锭上、下部金属逐渐向心部流动,左、右两侧金属流动与挤压速度保持同向;中、后期,±45.方向金属发生分离,一部分与上、下部金属合流后继续向心部流动,另一部分与左、右侧金属合流后向薄板宽度方向扩展.随挤压行程增加,成形薄板加长,局部高温区域由薄板两侧向中间部分转移;初始挤压温度400℃时,若挤压速度超过1 mm·s-1,薄板局部高温区域温度较高,成形质量和使用性能不易保证.采用380 ~ 400℃的初始挤压温度,大约0.2 mm·s-1的挤压速度,既可以显著降低设备成本,又利于保证薄板使用性能.  相似文献   

13.
AZ31镁合金的热挤压变形和力学性能分析   总被引:1,自引:0,他引:1  
为了掌握高精度镁合金管材的生产工艺,通过对铸锭的均匀化处理,借助500 t挤压机、拉伸试验机、金相显微镜和透射电镜(TEM)对AZ31镁合金管材的等温挤压过程进行了研究,试制了AZ31镁合金挤压薄壁管材,获得了尺寸精度高、粗糙度小和壁厚差小的管材;分析了不同挤压条件下的AZ31镁合金管材的尺寸精度、组织、力学性能.研究结果表明:在挤压温度为623士20K挤出管材经523K×3h退火时其性能较好,抗拉强度、屈服强度和延伸率分别为270 MPa,175 MPa和23.1%.  相似文献   

14.
数值模拟方法建立AZ31B镁合金管材的挤压极限图   总被引:2,自引:1,他引:2  
王新  王迎新  曾小勤  卢晨 《锻压技术》2007,32(1):99-102
采用Gleeble3000型热-力学模拟试验机对不同温度和应变速率下的AZ31B 镁合金的变形行为进行了研究,得到材料的流动应力曲线并导入专业成形数值模拟软件,对尺寸为Φ40mm×4mm的AZ31B镁合金圆管,进行了挤压数值模拟,根据模拟数据建立了挤压极限图,并通过挤压工艺试验对所得的挤压极限图进行了验证,结果吻合得很好.  相似文献   

15.
试验研究了挤压比对AZ31镁合金组织结构的影响.结果表明,258℃挤压变形镁合金在形变初期容易出现孪晶,再结晶晶粒一般出现在晶界和孪晶附近.挤压比小时动态再结晶晶粒平均尺寸为2 μm,动态结晶细化了晶粒.随着挤压比增大,晶粒尺寸减小,组织趋于均匀.挤压比达到16时,动态再结晶基本完成.挤压比为25时,能得到晶粒细小且均匀的组织,平均晶粒尺寸为7.3 μm.  相似文献   

16.
连续变断面循环挤压AZ31镁合金的组织与性能   总被引:1,自引:0,他引:1  
采用连续变断面循环挤压法分别对变形镁合金AZ31铸锭和商业AZ31进行不同循环道次的变形,考察其组织、性能变化.结果表明:AZ31镁合金铸锭经过一个循环的挤压,晶粒明显细化.商业AZ31铝合金材料分别进行2、4、6、8次循环变形,随着变形量增大,平均晶粒尺寸不断减小,组织趋于均匀;真应变为16时,平均晶粒尺寸为5.5 μm;随着循环次数增加,伸长率不断增加,与原始态的相比可提高2倍左右,但强度没有明显变化.  相似文献   

17.
AZ31镁合金的等温挤压及其力学性能分析   总被引:1,自引:0,他引:1  
等温挤压是镁合金材料的重要加工方法,它能改善制品的质量,提高制品的力学性能。研究了等温挤压AZ31镁合金材料的力学性能。结果表明:等温挤压显著地提高AZ31镁合金的强度、硬度,但当变形程度达到82%以上时,其强度不再增加,反而下降。材料的硬度有方向性。  相似文献   

18.
模具锥角α是影响镁合金型材热减径挤压动态再结晶行为的重要参数之一,通过建立AZ31镁合金棒材热减径挤压工艺动态再结晶预测模型,并针对模拟结果进行了挤压实验,对模具锥角α的影响规律进行了研究。结果表明:晶粒尺寸沿径向由中心向表层逐渐细化,沿轴向呈带状分布;随模具锥角α的增大,型材表层金属晶粒尺寸细化程度不断加剧;当模具锥角α从50°过渡到90°时,挤压型材表层金属平均晶粒尺寸细化程度提升25%,实验与模拟结果吻合良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号