共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
在超高强度钢板热冲压成形工艺中,能准确预测板料的温度场与模具的受力状况,对工艺制定与模具的优化具有重要意义。通过ABAQUS模拟软件建立塑性体热力耦合有限元模型,对热冲压过程进行模拟仿真,分析板料与模具的温度场以及模具所受的作用力。研究结果表明:板料转移时间控制在10 s内较好;在成形过程中,制件法兰与侧壁部分温度分布均匀且基本一致,制件法兰与侧壁部分的温度低于制件底部部分的温度;为保证模具强度,凸模圆角处及底部、凹模入口圆角处及底部的冷却水道直径及密度应较小,并且应适当增大水道与底部表面的距离。 相似文献
3.
4.
5.
本文基于正交试验法,利用有限元分析软件Dynaform,对某型托架冲压过程进行数值模拟分析。通过设定压边力、摩擦系数、冲压速度、板料尺寸和模具间隙等5个因素,参照五水平正交试验表对25个不同组合进行试验,并以减薄率、增厚率以及侧壁破裂情况为三个评定指标,结合综合平衡法对托架零件冲压性能进行数值模拟并找出影响托架表面质量的主要因素。最后,对上述参数进行优化,从而得到较高表面质量的托架。本文在相同类型产品加工过程中减少失稳起皱、破裂,改善零件表面质量方面提供了一定的理论基础。 相似文献
6.
7.
保压结束后的温度分布对高强钢热冲压零件的组织性能至关重要。以U形件为例,建立热冲压有限元模型,通过基于数值模拟的正交实验讨论了热冲压工艺参数板料成形初始温度、冲压速度、保压时间、摩擦系数对保压结束后U形件最大温差的影响。结论指出:保压时间对保压结束后U形件最大温差的影响显著,延长保压时间可显著降低保压结束后U形件的最大温差;板料成形初始温度显著水平次之;冲压速度与摩擦系数影响较小。同时确定了优化工艺参数组合。在此基础上进行了U形件热冲压试验,模拟结果与试验结果基本吻合,U形件温度变化趋势基本一致,验证了数值模拟的正确性与可靠性。 相似文献
8.
以U形件热冲压为例,通过数值模拟、正交试验和函数拟合研究了连续热冲压中模具温度的变化规律以及模具导热率、工件与模具间接触换热系数和冷却水对流换热系数对模具温度的影响。结果表明:连续热冲压U形件时,模具温度在波动中上升,达到热平衡时,波动幅度不再变化。模具温度越低,对工件淬火越有利。增大模具导热率与冷却水的对流换热系数可以降低模具温度;增大工件与模具间接触换热系数,模具温度上升,U形件冷速呈抛物线变化,通过计算可以确定接触换热系数的合理取值范围。 相似文献
9.
大型封头作为压力容器的关键部件,其尺寸的精度与形状压力容器的性能有着重要的作用。本文采用试验与模拟相结合的方式分析了封头冲压后的应力,应变分布,以及工件各处的厚度变化情况。 相似文献
10.
以某车型的前隔板为研究对象,通过三维建模软件设计工艺补充面和压料面,借助有限软件对其成形工序进行模拟分析.将数值模拟和正交试验设计相结合,采用多目标优化方法优化前隔板零件成形工序的压边力和各段拉延筋阻力系数,得到优化的参数组合为压边力F=500 kN,拉延筋阻力系数K1=0.4,K2=0.4,K3=0.3,K4 =0.6.极差分析表明,对最大减薄率影响最大的因素为拉延筋阻力系数K2,对最大增厚率影响最大的因素为拉延筋阻力系数K3.实验结果表明,采用优化后的参数得到实际成形零件无拉裂缺陷且零件厚度满足要求. 相似文献
11.
以22Mn B5高强度钢U形件为例,建立B柱热冲压有限元模型,并通过Deform-3D软件对热冲压过程进行数值模拟。设定保压结束后U形件的最大减薄率以及最大温差作为评价指标,基于数值模拟和3因素5水平正交实验方法,分析了在多指标因素不同水平下冷却系统参数对保压结束后U形件的最大减薄率以及最大温差大小和分布规律的影响,获得参数的优化组合:冷却管道直径为Φ8.5 mm,两管道孔中心间距为30 mm,管道孔中心与模具型面距离为13 mm。通过热冲压实验,得到保压结束后U形件的最大温差为124.5℃,最大减薄率为4.73%,验证了优化参数组合的有效性,为热冲压模具冷却系统设计优化提供了理论参考。 相似文献
12.
13.
14.
15.
针对车顶盖板冲压成形后局部最小厚度和最大厚度能够反映材料开裂和起皱的趋势,通过正交试验和AutoForm冲压模拟软件相结合,采用单因素试验和正交试验,以厚度变化量为评价指标,研究了压边力、冲压速度、摩擦系数、凸凹模间隙和拉深筋宽度对厚度的影响规律。采用极差和方差分析,确定了各因素影响的主次顺序以及不同因素对厚度影响的显著性,获得了最优冲压工艺参数,最后以实际生产出的实物模型进行验证。结果表明:厚度变化量随着各因素数值的增大而逐渐降低;各因素对最小厚度影响的主次顺序和选取的数值为:冲压速度1500 mm·s~(-1)、摩擦系数0.15、凸凹模间隙0.63 mm、拉深筋宽度18 mm、压边力200 kN。 相似文献
16.