首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
无机-有机杂化涂层具备无机涂层和有机涂层的双重特点和优异性能,具有广阔的应用前景。本文综述了溶胶-凝胶法(Sol-Gel)合成无机-有机杂化涂层材料的原理和步骤,重点阐述了基于溶胶-凝胶法制备的杂化涂料产品的最新应用,指出了这一研究领域新的应用方向。  相似文献   

2.
航空透明件有机-无机杂化耐磨涂层的应用研究进展   总被引:2,自引:0,他引:2  
透明耐磨涂层是提高航空玻璃透明件表面抗划伤和耐磨性的有效方法。本文评述了国内外航空透明件透明耐磨涂层的研究现状。重点综述了紫外光固化有机-无机杂化透明耐磨涂层的发展现状及应用前景,并指出采用溶胶-凝胶法制备纳米二氧化硅作为无机相,紫外光固化树酯作为有机相制备航空透明件透明耐磨涂层将成为该领域的研究重点。  相似文献   

3.
溶胶-凝胶技术在有机/无机杂化材料制备中的应用   总被引:2,自引:0,他引:2  
应用溶胶-凝胶法制备有机/无机杂化材料,可根据前驱体的种类和制备方法等对材料微观结构进行裁剪和优化,并可实现材料的功能化。有机/无机杂化材料根据有机相和无机相的比例不同,可分为有机改性陶瓷型杂化材料和陶瓷改性有机物型杂化材料两类。本文综述了应用溶胶-凝胶技术制备有机/无机杂化材料的原理以及应用进展。  相似文献   

4.
探索一种制备无机基质/有机杂化光功能材料的途径,采用溶胶-凝胶法在无机基质溶胶中分别掺杂自制的5种有机发光材料,制备出透明、均匀的有机-无机杂化发光薄膜,研究其发光行为,探讨发光行为的规律。  相似文献   

5.
以有机硅氧烷为先驱体,采用溶胶-凝胶法结合流平法在PMMA表面制备有机/无机耐磨涂层,研究了二氧化钛溶胶的含量对耐磨涂层硬度、耐划伤性及耐磨性的影响,利用ND J-1旋转黏度计、WGFS透光率/雾度测定仪、Taber 5151耐磨仪等分析表征涂层的性能。结果表明:加入二氧化钛溶胶后,钛原子取代了部分硅原子的位置,从而使形成的含有S i—O—Ti的有机无机三维立体网络结构,比只含S i—O—S i的有机无机三维立体网络结构的耐磨涂层性能更为优异。  相似文献   

6.
主要介绍了有机-无机杂化材料的特点、溶胶-凝胶法的原理,并对溶胶-凝胶法制备二氧化硅(SiO_2)/水性聚氨酯(WPU)杂化材料的不同作用类型进行了综述。最后对SiO_2/WPU杂化材料存在的问题提出了解决措施及相关的建议,并对该杂化材料的发展方向进行了展望。  相似文献   

7.
概要总结了溶胶-凝胶法制备有机-无机杂化功能材料的一些制备方法,说明了溶胶-凝胶法中存在的问题,并介绍了解决这些问题的研究.  相似文献   

8.
综述了国内外溶胶-凝胶法制备有机-无机杂化材料的研究进展  相似文献   

9.
ASD/SiO2-TiO2有机/无机二阶非线性光学杂化材料的研究   总被引:1,自引:0,他引:1  
《合成橡胶工业》2001,24(4):232
利用溶胶-凝胶法合成了一种新型的稳定的有机/无机二阶非线性光学杂化材料,研究了其组成相区和有机生色团在成膜后的取向稳定性。  相似文献   

10.
溶胶-凝胶包埋固定化酶的研究   总被引:1,自引:0,他引:1  
介绍了溶胶-凝胶(sol-gel)包埋法制备固定化酶的基本过程和影响因素,着重论述了S iO2、有机改性硅胶和有机/无机杂化硅胶三类溶胶-凝胶基质材料制备固定化酶的特性和在催化反应中的应用,对溶胶-凝胶包埋法制备高性能固定化酶的发展前景予以展望。  相似文献   

11.
综述了近年来包核法技术在有机颜料改性方面的进展,重点介绍了有机包核颜料的制备机理,以及以S iO2、TiO2和其他一些无机物对有机颜料进行包覆的实例。对有机包核颜料的应用前景进行了展望。  相似文献   

12.
综述了国内外耐高温防腐有机、无机和有机-无机复合涂料和热障防腐涂层技术的研究与应用的新进展,介绍了有机硅树脂、有机氟树脂、无机硅酸盐基涂料、无机磷酸盐基涂料、陶瓷涂层和搪瓷涂层的发展现状和前景.  相似文献   

13.
选择品质优良的丙烯酸乳液,配以各种助剂,确定最佳掺入量和最佳配比,所制成的LB-14聚合物水泥基韧性防水材料综合无机胶结材料和有机胶结材料的优点,性能优异,是防水领域的一种新型的外墙涂料。  相似文献   

14.
A series of UV-curable organic–inorganic hybrid materials were prepared by the sol-gel technique and coated onto Plexiglass® substrate. The effects of the content of EGDMA and the content of the inorganic part on various properties of the coatings, such as tensile strength, hardness, gloss, and cross-cut adhesion, were investigated. It was found that the properties of the coating were improved by the addition of an inorganic part. The thermal properties of the hybrids were enhanced by incorporating silane sol into the organic part. Furthermore, it was found that the coating containing silica had a higher char content at 800 °C than the coating without silica. SEM studies indicated that nanosized (about 50 nm) silica particles were evenly dispersed throughout the organic matrix. A photo-DSC investigation showed that the organic coating polymerized more quickly than the hybrid coating.  相似文献   

15.
Artificial super-hydrophobic surfaces are required for various applications. The super-hydrophobic surfaces are usually made by applying a low surface-energy organic coating on a highly textured substrate. A major problem with the as-created surfaces is their poor durability. This problem is even severer for the surfaces created by applying the organic coating on inorganic substrates. The present study reports for the first time the all-inorganic super-hydrophobic surface created by modifying the inorganic substrates with polymer-derived inorganic coating. A polydimethylsiloxane (PDMS) film was applied to an alumina substrate having flower-like hierarchal micro-nano surface texture, and then subjected to pyrolysis at 400°C in a nonoxidizing atmosphere. As a result, a SixCyOz ceramic coating with low-surface energy methyl groups was formed on the alumina substrate. The as-modified alumina exhibited super-hydrophobicity with a water contact angle of 170° and a sliding angle of 5°. The super-hydrophobicity was well retained after abrasion with sandpaper and exposure to boiling water and acidic solution. The super-hydrophobic alumina demonstrated desired water repelling and self-cleaning function. The method explored in this study could also be used for super-hydrophobic surface modification of other inorganic materials such as glass and metals.  相似文献   

16.
UV curable, hard, and transparent organic–inorganic hybrid coatings with covalent links between the inorganic and the organic networks were prepared by the sol–gel method. These hybrid coating materials were synthesised using a commercially available, acrylate end-capped polyurethane oligomeric resin, hexanedioldiacrylate (HDDA) as a reactive solvent, 3-(trimethoxysilyl)propoxymethacrylate (MPTMS) as a coupling agent between the organic and inorganic phase, and a metal alkoxide, tetraethylorthosilicate (TEOS). The materials were applied onto polycarbonate sheets and UV cured, followed by a thermal treatment to give a transparent coating with a good adhesion and abrasion resistance. The high transmission and the thermogravimetric behaviour indicate the presence of a nanoscale hybrid composition. In a taber abrasion test, uncoated polycarbonate sheets exhibit a 48% decrease in light transmittance at 633 nm after 300 wear cycles, whereas the hybrid coating system containing 10 wt% silica shows only 10% decrease in light transmittance. For obtaining antistatic coatings, an intrinsically conductive polymer (ICP) was added to the optimised coating formulation. It is shown that the surface resistivity of the organic–inorganic hybrid coating can be reduced from 1016 to 106 Ω for a high concentration of ICP in the coating formulation.  相似文献   

17.
在众多的涂层材料中,有机无机复合涂层材料在改善有机玻璃表面性能方面表现出独特的优点。本文中选择以透明甲基硅树脂为有机涂层,而后在有机涂层中添加纳米级陶瓷颗粒。固化成膜后,陶瓷纳米颗粒均匀分散在甲基硅树脂分子链中,无机相的存在将明显改善有机基体表面性能,将有机玻璃的耐磨性提高到了无机玻璃的水平。  相似文献   

18.
Inorganic/organic hybrid coatings were prepared using epoxidized linseed oil with combinations of the two sol–gel precursors (titanium(IV) isopropoxide, tetraethyl orthosilicate), and a telechelic silicate based on a modified oligomeric caprolactone. The coatings were UV-cured with sulfonium initiators which concomitantly cured the epoxy functional organic phase and the sol–gel inorganic phase to form a co-continuous inorganic/organic system. A ternary experimental design was employed to elucidate the influence of inorganic modifier on the mechanical properties of the inorganic/organic hybrid coatings. Small angle X-ray scattering (SAXS) was used to evaluate radius of gyration of the metal-oxo-cluster. Various coating properties, such as hardness, impact resistance, adhesion, solvent resistance, and surface energy were investigated as a function of sol–gel precursors. Inorganic/organic hybrid coatings containing both tetraethyl orthosilicate and the modified caprolactone resulted in improved hardness and solvent resistance with no loss of impact strength. The inclusion of titanium(IV) isopropoxide in to the systems resulted in a systematic reduction in the coatings properties. This was attributed to inhibition of the organic crosslinking process as a consequence of absorption of ultraviolet light by the titanium-oxo-clusters.  相似文献   

19.
Epoxidized soybean oil-based ceramer coatings   总被引:3,自引:2,他引:1  
New inorganic/organic hybrid coating containing epoxidized soybean oil were prepared. Three sol-gel precursors [titanium (IV) i-propoxide, titanium (IV) di-i-propoxide bis-acetoacetonate, and zirconium n-propoxide] were utilized as the inorganic phase. Various coating properties, including adhesion, hardness, impact resistance, flexibility and tensile properties, were investigated as a function of sol-gel precursor type and concentration. All ceramer coatings exhibited excellent flexibility and hardness. Tensile strength and hardness increased with sol-gel precursor concentration. A slight decrease in adhesion and impact resistance was observed with increasing precursor content.  相似文献   

20.
A series of UV-cured organic–inorganic hybrid coating materials containing up to 20 wt.% silica were prepared by sol–gel method from tetraethoxy silane (TEOS) which is used as the primary inorganic precursor, and diallylphenylphosphine oxide monomer (DAPPO), aliphatic urethane diacrylate resin (Ebecryl 210) are employed as the source of the organic components. In addition, methacryloxypropyltrimethoxy silane (MAPTMS) was used as both a secondary inorganic source and a silane-coupling agent to improve the compatibility of the organic and inorganic phases. The DAPPO content in all the coating formulations were from 0 to 20 wt.%. The physical and mechanical properties such as gel content, hardness, adhesion, gloss, contact angle as well as tensile strength were measured. These measurements revealed that all the properties of the hybrid coatings improved effectively, in case of adding the sol–gel precursor and DAPPO monomer content in the hybrid systems. The photo-calorimetric-DSC studies showed that the double bond conversion of the hybrid coatings was faster than the coating materials without silica. The thermal stabilities of the UV-cured hybrid materials were investigated by thermogravimetric analysis. The results showed that the addition of sol–gel precursor and DAPPO into the organic network also improves the thermal-oxidative stability of the hybrid coating materials. The surface morphology was also characterized by scanning electron microscopy (SEM). SEM studies indicated that inorganic particles were dispersed homogenously throughout the organic matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号