共查询到17条相似文献,搜索用时 62 毫秒
1.
挖掘用户偏爱的浏览模式就是从Web日志中发现多数用户偏爱的浏览路径.网页上的浏览时间被转换成一个模糊语言变量来体现网页上浏览时间的特征,最后从建立的包含所有用户浏览信息的FLaAT(Frequent Link and Access Tree)中挖掘增量式带有模糊语言变量的用户偏爱浏览模式. 相似文献
2.
吴瑞 《模式识别与人工智能》2007,20(6)
提出加权支持度和加权偏爱度用来准确反映用户的访问兴趣.其中,专家给定网页的语言评估被刻画成相应的模糊语言变量,使用模糊模拟的方法把这些模糊语言变量转化成表示网页重要性的权重.为了避免用户重要浏览信息的丢失,建立包含所有用户浏览信息的频繁链表加存权树(FLAAT),并从中挖掘用户偏爱的浏览模式.此外网页上的浏览时间也是反映用户兴趣和偏爱的一个重要因素,它被表示成相应的模糊语言变量,因而所获得的带有模糊浏览时间的用户偏爱浏览路径更能反映用户的兴趣和偏爱. 相似文献
3.
指出了一种加权的Web挖掘技术,从Web日志中发现语义限定的加权序列模式,每个网页由不同的专家给出语义上的需要性评估,这些语义评估再被转化成表示权重的模糊集。最后由用户指定语义上的最小支持度和最小偏爱度进行挖掘,这种语义上的输入和输出更自然,更易被理解。最后通过一个例子描述了所提出的方法。 相似文献
4.
吴瑞 《小型微型计算机系统》2007,28(6):1098-1102
提出了使用语言最小支持度和偏爱度的web日志挖掘方法.表示用户兴趣和偏爱程度的支持度和偏爱度被刻画成相应的模糊语言变量,通过与最小语言支持度和偏爱度(模糊语言变量)比较,判定该网页是否是一个用户偏爱网页,这种语言的输入输出更自然更易理解.此外,网页上的浏览时间也是反映用户兴趣和偏爱的一个重要因素,它也被表示成相应的模糊语言变量,既体现不同网页浏览时间的不同,也可以忽略它们之间的细微差别.所获得的带有模糊时间的用户偏爱浏览路径更能反映用户的兴趣和偏爱性. 相似文献
5.
在构建个性化服务中常常通过需要挖掘用户的浏览模式来改进站点的结构,使得客户访问站点变得容易。问题的关键就在于如何从Web日志中发现用户浏览模式。该文就此提出一种算法,通过为Web日志数据构造后缀树进行序列挖掘,找出最大频繁序列,进而发现有意义的浏览模式。该算法的重要特点是可以在线进行。 相似文献
6.
通过给出页面层次的概念,充分考虑用户在页面上的浏览时间以及在路径选择上表现出来的浏览偏爱,结合Web站点的结构层次特征,提出了一种改进的Web用户浏览偏爱模式挖掘算法.通过具体的事例和试验数据证明,新的模型能够更准确地寻找用户浏览偏爱模式,从而发现用户的兴趣和爱好. 相似文献
7.
吴瑞 《计算机工程与应用》2010,46(30):20-22
在Web使用挖掘中,用户浏览模式的聚类结果有助于网站设计者理解Web用户的浏览特点和需要。设计了一种有效的Web浏览模式的聚类方法,网页是否被浏览及网页上的浏览时间反映了用户的浏览兴趣,它们被刻画成等长的用户浏览模式向量中的相应分量,此外,浏览模式之间的关系被刻画并被作为属性加入到该向量中,形成扩展的用户浏览模式向量,对这些向量使用粗糙k-均值法可对用户浏览模式进行有效的聚类。实例和实验分析说明,使用该方法的聚类结果更合理。聚类结果可用于个性化网站的设计。 相似文献
8.
9.
Web使用模式挖掘的研究 总被引:6,自引:0,他引:6
谷秀岩 《计算机工程与应用》2005,41(16):175-178
Web挖掘是传统数据挖掘技术在Web环境下的应用,Web挖掘分为Web内容挖掘、Web结构挖掘和Web使用模式挖掘。Web使用模式挖掘是从用户浏览网站的数据中抽取感兴趣的模式,理解用户的浏览兴趣行为,以便进一步改善网站结构或为用户提供个性化的服务。文章主要论述了Web使用模式挖掘。 相似文献
10.
从Web日志中挖掘用户浏览偏爱路径 总被引:55,自引:0,他引:55
Web日志中包含了大量的用户浏览信息,如何有效地从其中挖掘出用户浏览兴趣模式是一个重要的研究课题.作者在分析目前用户浏览模式挖掘算法存在的问题的基础上,利用提出的支持一偏爱度的概念,设计了网站访问矩阵,并基于这个矩阵提出了用户浏览偏爱路径挖掘算法:先利用Web日志建立以引用网页URL为行、浏览网页URL为列、路径访问频度为元素值的网站访问矩阵.该矩阵为稀疏矩阵,将该矩阵用三元组法来进行表示.然后,通过对该矩阵进行支持一偏爱度计算得到偏爱子路径.最后进行合并生成浏览偏爱路径.实验表明该算法能准确地反映用户浏览兴趣,而且系统可扩展性较好.这可以应用于电子商务网站的站点优化和个性化服务等. 相似文献
11.
在实际应用中,一个网站的网页对用户有着不同的重要性。该文每个网页由不同的专家给出语义上的重要性评估,这些语义评估再被转化成表示权重的模糊集。此外,由于树结构在挖掘频繁项目时不需要产生频繁项集及对这些频繁项进行测试而被广泛应用于数据挖掘中。然而,单纯的树结构可能造成有用信息的丢失。因此,该文提出了一种新的结构——频繁链表加存取树(简称为FLAAT),并在此结构上提出了一种有效的加权偏爱模式的挖掘算法。试验证明该文的算法是行之有效的。 相似文献
12.
13.
14.
15.
16.
基于Web日志的用户访问模式挖掘 总被引:1,自引:0,他引:1
Web日志挖掘是数据挖掘技术在Web日志数据存储中的应用。论文介绍了Web日志挖掘,在分析发现用户访问模式方法——类Apriori算法的基础上,给出一种基于粗糙集的用户访问模式聚类方法。 相似文献
17.
当今互联网所提供的功能和服务越来越多,Web内容也越来越丰富,移动应用越来越流行。然而,复杂的Web服务应用对用户提出了更高的要求,给用户浏览带来了很多问题,很多时候用户会感到无所适从。文中提出基于用户浏览序列模式的用户行为提取与分析方法。该方法可以分为浏览模式分析和用户聚类两部分。在浏览模式分析时,首先根据用户行为数据得到浏览序列,然后运用序列模式挖掘PrefixSpan算法获取用户习惯的浏览模式,最后把分析获取的用户浏览模式应用到Web浏览中,为不同的用户需求提供个性化的服务。在用户聚类时,运用层次聚类方法按照浏览模式的相似性对用户进行聚类,以分析用户的不同属性(如年龄、职业、学历等)对用户浏览模式的影响。实验结果表明,文中采用的PrefixSpan算法和层次聚类方法在用户浏览模式分析和研究方面具有很好的可行性和有效性。 相似文献