首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aimed to identify the functional contribution of reflexes to human motor control during posture maintenance. Continuous random force disturbances were applied at the hand while the subjects were instructed to minimize the deviation resulting from the force disturbances. The results were analyzed in the frequency domain with frequency response functions (FRFs). Two FRFs were evaluated: 1) the mechanical admittance and 2) the reflexive impedance, expressing the dynamic relation between position and muscle activation (assessed via electromyography, EMG). The reflexive impedance is a direct measure of the proprioceptive reflexes. To record all relevant dynamical characteristics of the arm, wide bandwidth signals were used as force disturbance. Distributing the power of the signal over fewer frequencies within the bandwidth improved the signal-to-noise-ratio SNR of the EMG recordings, facilitating reliable estimation of the reflexive impedance. The coherence indicated that the relation between force disturbance and EMG is linear under the given conditions and improved with the SNR. The method of designing disturbance signals and the estimation of the reflexive impedance are useful for studies aiming to quantify proprioceptive reflexes and to investigate its functionality.  相似文献   

2.
The objective for this study was to investigate whether the adaptation of postural control was similar during galvanic vestibular stimulation and during vibratory proprioceptive stimulation of the calf muscles. Healthy subjects were tested during erect stance with eyes open or closed. An analysis method designed to consider the adaptive adjustments was used to evaluate the motion dynamics and the evoked changes of posture and stimulation response. Galvanic vestibular stimulation induced primarily lateral body movements and vibratory proprioceptive stimulation induced anteroposterior movements. The lateral body sway generated by the galvanic stimulation was proportionally smaller and contained more high-frequency movements (> 0.1 Hz) than the anteroposterior body sway induced by the vibratory stimulation. The adaptive adjustments of the body sway to the stimulation had similar time course and magnitude during galvanic and vibratory stimulation. The perturbations induced by stimulation were gradually reduced within the same time range (15-20 s) and both kinds of stimulation induced a body leaning whose direction was dependent on stimulus. The similarities in the adjustment patterns suggest that postural control operates in the same way independent of the receptor systems affected by the disturbance and irrespective of whether the motion responses were induced in a lateral or anteroposterior direction.  相似文献   

3.
Positioning of things, devices and people is the fundamental technology in ubiquitous computing. However, few literature has discussed the impact of positioning errors due to localization algorithm properties such as ranging noise and deployment of anchors on people’s identification of objects. Since several factors such as relative distance, relative angles and grouping of objects are intricately related with each other in such identification, it is not an easy task to investigate its characteristics. In this paper, we propose criteria to assess the “accuracy” of the estimated positions in identifying the objects. The criteria are helpful to design, develop and evaluate localization algorithms that are used to tell people the location of objects. Augmented reality is a typical example that needs such localization algorithms. To model the criteria without ambiguity, we prove that the Delaunay triangulation well-captures natural human behavior of finding similarity between estimated and true positions. We have examined different localization algorithms to observe how the proposed model quantifies the properties of those algorithms. Subjective testing has also been conducted using questionnaires to justify our quantification sufficiently renders human intuition.  相似文献   

4.
This paper addresses the design and properties of an intelligent optimal control for a nonlinear flexible robot arm that is driven by a permanent-magnet synchronous servo motor. First, the dynamic model of a flexible robot arm system with a tip mass is introduced. When the tip mass of the flexible robot arm is a rigid body, not only bending vibration but also torsional vibration are occurred. In this paper, the vibration states of the nonlinear system are assumed to he unmeasurable, i.e., only the actuator position can be acquired to feed into a suitable control system for stabilizing the vibration states indirectly. Then, an intelligent optimal control system is proposed to control the motor-mechanism coupling system for periodic motion. In the intelligent optimal control system a fuzzy neural network controller is used to learn a nonlinear function in the optimal control law, and a robust controller is designed to compensate the approximation error. Moreover, a simple adaptive algorithm is proposed to adjust the uncertain bound in the robust controller avoiding the chattering phenomena. The control laws of the intelligent optimal control system are derived in the sense of optimal control technique and Lyapunov stability analysis, so that system-tracking stability can be guaranteed in the closed-loop system. In addition, numerical simulation and experimental results are given to verify the effectiveness of the proposed control scheme.  相似文献   

5.
Millar  R. A. 《Spectrum, IEEE》1968,5(1):90-95
Where speed accuracies within 0.1 percent are desired over a wide speed range, the digital approach has proved superior to the analog method. This article describes a typical hybrid digital/analog servo system used to control the speed of a dc motor. A vital part of the system is the comparator, which must combine the functions of frequency and phase discrimination and perform the transition smoothly. It is also shown how precise synchronism between two or more rotating systems, with respect to both speed and position, can be maintained, giving the effect of a ``synchronous link.'  相似文献   

6.
Concepts for the sensorless position control of induction motor drives rely on anisotropic properties of the machine rotor. Such anisotropies can be incorporated as periodic variations of magnetic saliencies in various ways. The built-in spatial anisotropy is detected by injecting a high-frequency flux wave into the stator. The resulting stator current harmonics contain frequency components that depend on the rotor position. Models of the rotor saliency serve to extract the rotor position signal using phase-locked loop techniques. A different approach makes use of the parasitic effects that originate from the discrete winding structure of a cage rotor. It has the merit of providing high spatial resolution for incremental positioning without sensor. The practical implementation of sensorless position identification and of a high-accuracy position control system are reported  相似文献   

7.
The human arm has 7 degrees of freedom (DOF) while only 6 DOF are required to position the wrist and orient the palm. Thus, the inverse kinematics of an human arm has a nonunique solution. Resolving this redundancy becomes critical as the human interacts with a wearable robot and the inverse kinematics solution of these two coupled systems must be identical to guarantee an seamless integration. The redundancy of the arm can be formulated by defining the swivel angle, the rotation angle of the plane defined by the upper and lower arm around a virtual axis that connects the shoulder and wrist joints. Analyzing reaching tasks recorded with a motion capture system indicates that the swivel angle is selected such that when the elbow joint is flexed, the palm points to the head. Based on these experimental results, a new criterion is formed to resolve the human arm redundancy. This criterion was implemented into the control algorithm of an upper limb 7-DOF wearable robot. Experimental results indicate that by using the proposed redundancy resolution criterion, the error between the predicted and the actual swivel angle adopted by the motor control system is less then 5°.  相似文献   

8.
The purpose of this paper is to present our results in developing a dynamic model of the Mitsubishi PA-10 robot arm for the purpose of low-velocity trajectory tracking using low-feedback gains. The PA-10 is ideal for precise manipulation tasks because of the backdrivability, precise positioning capabilities, and zero backlash afforded by its harmonic drive transmission (HDT). However, the compliance and oscillations inherent in harmonic drive systems, and the lack of any technical information on the internal dynamics of the transmission, make the development of an accurate dynamic model of the robot extremely challenging. The novelty of this research is therefore the development of a systematic algorithm to extract the model parameters of a harmonic drive transmission in the robot arm to facilitate model-based control. We have modeled all seven joints of the Mitsubishi PA-10, and we have done several experiments to identify the various parameters of the harmonic drive system. We conclude with a sample trajectory-tracking task that demonstrates our model-based controller for the Mitsubishi PA-10 robot arm.  相似文献   

9.
步进电机的远程多点位置控制系统,利用TCP协议将服务器端控制中心和客户端控制器接入因特网,可实现控制数据和位置监控数据的远程同步传输。系统采用NI公司的CompactRIO作为核心控制器;通过LabVIEW编写改进专家PID控制算法,可根据设定位置与实时位置的偏差动态设定输出控制器参数,有效防止过冲现象,实现步进电机的精确位置控制。步进电机的驱动控制电路由单片机和LM298构成,结合多级细分控制方法可有效抑制步进电机的震动和失步。  相似文献   

10.
A system is described for determining the mechanical properties of the human arm during unconstrained posture and movement. An airjet perturbation device is attached to the wrist with a special cuff, and provides high-frequency stochastic perturbations in potentially three orthogonal directions. The airjet operates as a fluidic flip-flop utilizing the Coanda effect, and generates binary force sequences with a steady-state thrust of 4 N, a flat frequency response to 75 Hz, usable thrust to 150 Hz, and a rise time of 1 ms, when the static pressure at the nozzle inlet is 5.5 x 10(5) Pa (80 psi). These operating characteristics are adequate to identify the arm's mechanical properties efficiently and robustly.  相似文献   

11.
介绍了一种基于ARM处理器与模糊控制算法的焊接机器人位置随动跟踪系统。在论述了模糊控制规律实现方法的基础上,提出了采用模糊控制法来实现焊接机器人与控制箱的精确同步运行,最后通过MATLAB搭建仿真平台,并验证了模糊控制方法在位置随动跟踪系统上的可行性和稳定性,从而可以在一定程度上提高了工业焊接技术水平。  相似文献   

12.
An induction motor position control system based on the sliding mode control is presented. In the sliding mode control, the control function is discontinuous on the hyperplane, which causes harmful effects such as current harmonics and acoustic noise in the motor drive application. A low-pass filter is introduced between the sliding mode controller output and the motor controller input to reduce these effects. Although the filter smooths the motor input current and alleviates the vibration at the final reference position, it may cause sluggish response in transient condition. To overcome the problem, a variable-bandwidth filter is proposed. In steady state, the bandwidth of the filter is made to be narrow to mitigate the ripple components while it is widened during the transient to improve the response. To achieve such an operation, the bandwidth of the filter is adjusted according to the error function. The proposed method shows good performance, which is confirmed through computer simulation and experiments  相似文献   

13.
This paper considers the position-tracking problem of a magnetic levitation system in the presence of modeling errors due to uncertainties of physical parameters. A robust nonlinear controller is designed to achieve excellent position-tracking performance. The recently developed dynamic surface control is modified and applied to the system under study, to over-come the problem of "explosion of terms" associated with the backstepping design procedure. Input-to-state stability of the control system is analyzed, and the advantages of the dynamic surface control technique over the conventional backstepping technique are verified through both theoretical and experimental studies.  相似文献   

14.
15.
近年来,各大电梯厂家均在不断地加大对技术创新研究的投入,电梯系统的控制也随之出现很多新的应用技术。本文介绍的弱磁控制技术便是其中的一项新的电梯应用技术,通过应用弱磁控制技术,电梯可以在负载较低的情况下,提升轿厢速度,实现弱磁升速的效果。并且通过分析弱磁控制与电机磁极位置的关系,改善弱磁控制的性能。本文网络版地址:http://www.eepw.com.cn/article/266054.htm  相似文献   

16.
It is shown that a result of a recent letter on the global stability of a fourth-order nonlinear position control system is incorrect. Further results on this system are obtained.  相似文献   

17.
18.
《现代电子技术》2016,(19):174-178
随着科技的飞速发展,企业的生产能力大幅提高,传统的人工码垛已经不能满足企业对物流的需求,码垛机器人技术应运而生。高效率的码垛能够大大节省物流时间,提高工作效率。系统利用四轴码垛机械臂仿真控制软件实际控制一台小型的关节型四轴码垛机械臂。机械臂利用舵机作为执行元件,DSP作为控制器控制舵机运动。仿真控制软件根据规划的路径计算出码垛过程中舵机运行的角度,通过串口通信将角度数据传递给DSP,DSP控制舵机的运行并带动码垛机械臂实现码垛功能。  相似文献   

19.
This letter reports a bang-bang load frequency control policy based on the second method of Lyapunov. The proposed method is simple and practically feasible for implementation. A numerical illustration on a two-area load frequency control system is presented in order to verify the practicality of the proposed method.  相似文献   

20.
The spinal of cats was directly exposed to 2450 CW microwave radiation in order to study the effect on reflex response and synaptic function. A small but statistically significant increase in the reflex response was detected in the first series of experiment, which indicates enhancement of the synaptic transmission. However, this effect was not observed in a second series of experiments in which the incident power density was increased from 10 mW/cm(2) to 20 mW/cm(2) and a more rigorous experimental design was employed. The slight changes that were observed in the second series could be attributed to small temperature variations during the experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号