共查询到19条相似文献,搜索用时 62 毫秒
1.
针对决策过程中区间数更适合表达决策者对候选方案的偏好程度,基于区间数判断矩阵,综合考虑决策者个体权重,扩展“和积法”,应用“相对熵”的概念,提出了一种加权个体方案权重集结的群体决策方法.该方法将中间结果转化为实数型再进行集结,避免了决策者判断信息的丢失.最后,通过算例说明了该方法的可行性和有效性. 相似文献
2.
3.
研究区间数判断矩阵的满意一致性和方案的排序.首先,给出区间数判断矩阵满意一致性的一种新的定义;然后,利用区间数判断矩阵的0-1型中心值排列矩阵是否为标准0-1型排列矩阵来判断区间数判断矩阵是否为满意一致性矩阵,若具有满意一致性,则可以直接从0-1型中心值排列矩阵中得出方案的优劣顺序,此种方法适用于对存在等价方案的区间数判断矩阵满意一致性的判定;最后给出两个例子说明了该方法的合理性和可行性. 相似文献
4.
5.
6.
基于区间数相离度理论和熵值理论, 探讨了一类多阶段多属性三端点区间数型群决策中的动态属性权重、动态专家权重和阶段权重问题, 提出了多阶段属性权重确定方法和阶段内专家权重的计算方法. 计算出属性权重、阶段内专家权重和阶段权重, 并利用区间数贴近度方法生成最终的群决策方案排序. 应用实例分析结果表明, 所提出的决策方法具有较好的可行性和合理性.
相似文献7.
8.
9.
区间粗糙数判断矩阵具有在不确定判断中保留部分确定判断的双重特性,然而目前对其研究相对较少,特别是对其一致性的相关研究。为此该文提出了区间粗糙数互补判断矩阵的完全一致性和强一致性的概念以及判断其是否具有完全一致性和强一致性的相关定理。通过算例讨论了内外一致性对于整体一致性的影响,并给出区间粗糙数判断矩阵的完全一致性和强一致性的关系,为区间粗糙数判断矩阵的应用提供一致性理论基础作出相应探讨。 相似文献
10.
11.
多属性决策问题的实质是利用已有的决策信息,通过一定方式对备选方案进行分析、排序、择优和评价,以找到一种简捷方便的排序方法.鉴于此,针对属性值为区间数的多属性决策问题,首先提出区间数向联系数的转化及联系数可能度;然后根据可能度大小提出区间数及决策对象优势关系,并根据优势关系及联系数可能度大小提出几种新的排序算法;最后以实际投票决策问题为例验证了上述排序算法. 相似文献
12.
本文将后悔理论方法用于解决三参数区间数多属性决策问题.首先,提出一种将三参数区间数转换为两参数区间数的方法,避免了传统三参数区间数在大小比较方面不确定信息的遗失.其次,依据两参数区间数决策信息计算不同状态下备选方案及正理想方案各属性的效用值,从而可得各备选方案的后悔–欣喜值及综合感知效用值.然后,针对权重范围已知的情况,通过构建备选方案综合感知效用最大化优化模型求得属性权重;针对权重信息完全未知的情况,提出一种基于注水原理的属性权重求解方法.最后,利用属性权重加权求和方法得到备选方案综合效用值,从而通过比较综合效用值得到方案的排序结果. 相似文献
13.
基于诱导有序加权平均(IOWA)算子和连续区间有序加权平均(C-OWA)算子,提出一种诱导连续区间有序加权平均(IC-OWA)算子,并讨论了该算子的优良性质.针对区间数互补判断矩阵提出了连续偏好矩阵的概念,定义了基于专家评判水平偏差的诱导连续区间有序加权平均(DIC-OWA)算子,并给出一种基于该算子的区间数群决策方法.最后通过算例说明了该方法的可行性. 相似文献
14.
This paper investigates incomplete interval fuzzy preference relations. A characterization, which is proposed by Herrera-Viedma et al. (2004), of the additive consistency property of the fuzzy preference relations is extended to a more general case. This property is further generalized to interval fuzzy preference relations (IFPRs) based on additive transitivity. Subsequently, we examine how to characterize IFPR. Using these new characterizations, we propose a method to construct an additive consistent IFPR from a set of n − 1 preference data and an estimation algorithm for acceptable incomplete IFPRs with more known elements. Numerical examples are provided to illustrate the effectiveness and practicality of the solution process. 相似文献
15.
16.
基于区间数的多时点多属性灰靶决策模型 总被引:1,自引:0,他引:1
针对多属性决策的不确定性和多时点性,提出基于区间数的多时点多属性灰靶决策模型.该方法依据逼近理想解方法和区间数的运算规则,结合指标权重来计算案例的正负靶心距;基于灰熵和时间度建立时点权重的求解模型;根据指标权重和时间点权重给出对各时点的靶心距进行集结的目标函数,利用隶属度对案例进行排序,进一步完善了灰靶决策理论.最后,通过具体算例验证了所提出模型的可行性和有效性. 相似文献
17.
A method based on distance measure for interval-valued intuitionistic fuzzy group decision making 总被引:2,自引:0,他引:2
Zeshui Xu 《Information Sciences》2010,180(1):181-190
In this paper we introduce some relations and operations of interval-valued intuitionistic fuzzy numbers and define some types of matrices, including interval-valued intuitionistic fuzzy matrix, interval-valued intuitionistic fuzzy similarity matrix and interval-valued intuitionistic fuzzy equivalence matrix. We study their properties, develop a method based on distance measure for group decision making with interval-valued intuitionistic fuzzy matrices and, finally, provide an illustrative example. 相似文献
18.
基于区间直觉梯形模糊数的多属性决策方法 总被引:3,自引:0,他引:3
对区间直觉梯形模糊数进行研究.探讨了区间直觉梯形模糊数的运算法则及其性质;给出了区间直觉梯形模糊数的加权算术平均和加权几何平均算子,定义了区间直觉梯形模糊数的得分函数和精确函数,进而给出其排序方法;建立了基于区间直觉梯形模糊数的多属性决策模型,并提出了相应的决策方法.实例分析验证了所提出方法的有效性. 相似文献
19.
Preference transitivity characterized by ordinal consistency is a fundamental principle for decision making models based on pairwise comparison matrices (PCMs). However, little previous research has addressed ordinal consistency in an optimal way. Further, because ordinal consistency is not considered in the consensus reaching process, non-transitive preferences may still exist in the revised PCMs. In this paper, optimization models are proposed to obtain transitive preferences for solving individual consistency and group consensus problems. First, the conditions satisfying the ordinal consistency of PCMs are analysed and a system of constraints is derived to allow for the ordinal consistency to be explicitly controlled in the optimization model. A mixed integer linear optimization model is then proposed to assist decision makers satisfy both the ordinal and cardinal consistencies. A second mixed integer linear optimization model is then designed to ensure that the consensus level in group decision making problems can be achieved when both the group as a whole and all individuals have acceptably cardinal and ordinal consistencies. Optimization models considering ordinal consistency and classical cardinal consistency indices are open problems needing to be managed in future. Compared with existing methods, the proposed models provide an optimal way to minimize modifications in deriving transitive preferences. Finally, the feasibility and validity of the models are verified through comparisons with classic models. 相似文献