首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用轧后空冷+超快速冷却的方式,研究了开冷温度对热轧铁素体/贝氏体(F/B)双相钢组织性能的影响。结果表明:开冷温度显著影响F/B双相钢的显微组织和性能。开冷温度由747 ℃降至700 ℃时,铁素体体积分数由17.3%增至85.7%,铁素体晶粒尺寸由3.3 μm粗化至3.6 μm,贝氏体中析出的碳化物含量增加。同时,F/B双相钢的屈服强度从594 MPa降至475 MPa,抗拉强度从648 MPa降至532 MPa,伸长率从17.7%升至34.3%,扩孔率从36.4%提高至82.8%。因此,为实现热轧F/B双相钢力学性能和扩孔性能的平衡,开冷温度应控制在730~700 ℃。  相似文献   

2.
采用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)和拉伸试验机研究了卷取温度对工业生产的高扩孔540HE钢微观组织、力学性能及扩孔率的影响。结果表明:卷取温度变化可显著改变试验钢的铁素体晶粒尺寸、(Ti,Nb) C析出相形态和贝氏体含量,从而影响其力学性能及扩孔率。随着热轧卷取温度的降低,试验钢的屈服强度及抗拉强度升高,断后伸长率降低,扩孔率略有增加。低温卷取时铁素体晶粒尺寸较小,贝氏体含量增加,贝氏体细小且分布均匀;(Ti,Nb) C析出相细小弥散分布,可显著强化铁素体基体从而减小其与贝氏体硬度差异,有利于扩孔率的提升。  相似文献   

3.
康海军  王旭生 《轧钢》2018,35(6):28-30
对不同卷取温度下540MPa级热轧酸洗板的组织性能进行了研究。结果表明,卷取温度为380℃时,540 MPa级热轧酸洗板组织为铁素体+粒状贝氏体,R_(eL)≥440MPa、R_m≥550MPa,A≥28%,扩孔率达100%;当卷取温度为290℃时,钢板组织中出现了马氏体,其屈服强度和抗拉强度明显提升,扩孔性能和伸长率下降;当卷取温度降至220℃时,钢板组织中出现了大量马氏体。因此,为获得理想的强度、塑性及扩孔性能,卷取温度不宜过低。  相似文献   

4.
惠亚军  刘锟  吴科敏  李秋寒  牛涛  武巧玲 《金属学报》2020,56(12):1605-1616
采用OM、SEM和TEM等研究了卷取温度对500 MPa级热冲压桥壳用钢的组织与性能的影响规律。结果表明,热冲压桥壳用钢在600和570℃卷取时的力学性能有显著差异,570℃卷取时的屈服强度和抗拉强度分别达到538和641 MPa,较600℃卷取时分别提高了165和117 MPa,而其20~-40℃的系列温度冲击功均低于600℃,尤其是-40℃及以下低温韧性明显恶化,这与热冲压桥壳用钢在不同卷取温度下的显微组织和析出物的差异有关。600℃卷取时的组织由铁素体和珠光体组成,铁素体晶粒平均尺寸为4.48μm,大角度晶界体积分数为68.1%,析出物平均尺寸为8.4 nm,其中10 nm以下的纳米级析出物体积分数约为70%;当卷取温度降低至570℃时,其组织主要由针状铁素体、粒状贝氏体、多边形铁素体/准多边形铁素体和珠光体组成,铁素体晶粒平均尺寸为4.39μm,大角度晶界体积分数约为54.5%,析出物的平均尺寸为6.4 nm,其中10 nm以下的纳米级析出物体积分数高达86%;这种差异主要是由于热冲压桥壳用钢的贝氏体转变温度高达580℃,以及570℃卷取时的形核率与形核速率均大于600℃所致。...  相似文献   

5.
研究卷取温度对低合金高强度钢组织与性能的影响。结果表明,钢的屈服强度、硬度和抗拉强度随卷取温度的升高而降低,伸长率随卷取温度的升高而有所增加。当卷取温度为580℃时,钢的组织为铁素体+粒状贝氏体,屈服强度为731.52 MPa,抗拉强度为840.67 MPa,显微硬度为231.6 HV,伸长率为20.2%,强韧匹配性较佳。  相似文献   

6.
基于合金减量化原则,采用以超快冷技术为核心的新一代TMCP技术制备了600 MPa级热轧DP钢,研究了卷取温度对试验钢组织性能的影响。结果表明:随着卷取温度增加,试验钢铁素体晶粒尺寸增加,体积分数减小,屈服强度增加,伸长率增加;组织中马氏体均以长条马氏体为主,并由小岛状向块状转变,其体积分数减少,抗拉强度降低;屈强比增加,n值减小。卷取温度对铁素体和马氏体的体积分数、形貌、分布及析出行为有影响。100℃卷取的试验钢,组织中大量的细长条马氏体和较少的析出物提高了材料的位错密度和抗延迟断裂能力,其抗拉强度最高为625 MPa,伸长率为26.0%,屈强比最低为0.52,n值最高为0.21,具有最优的综合性能。考虑到低的卷取温度对工艺控制能力和卷取设备的要求高,试验钢在该工艺条件下合适的卷取温度可选为150~200℃。  相似文献   

7.
对轧制后分阶段冷却中冷温度对780 MPa级高扩孔钢组织及其对性能的影响进行了研究。结果表明:中冷温度为560℃时,试验钢组织为单一粒状贝氏体;中冷温度为660℃时,试验钢组织为多边形铁素体和粒状贝氏体,有利于改善钢的韧性,可获得优异的综合力学性能:屈服强度705 MPa,抗拉强度808 MPa,伸长率为16.8%,扩孔率为93.3%。  相似文献   

8.
邹英  刘华赛  韩赟  王朝斌  邱木生  阳锋 《轧钢》2022,39(4):76-80
热基镀锌是提高高扩孔钢耐腐蚀性能的重要手段之一。利用光学显微镜、扫描电镜、拉伸试验机和成形试验机等设备,研究了退火温度对铁素体贝氏体型高扩孔钢组织性能的影响,并进行了450 MPa级热基镀锌高扩孔钢的工业试制。结果表明:随退火温度由710 ℃升高至790 ℃,钢中渗碳体颗粒逐渐溶解,贝氏体体积分数先升高后降低,铁素体晶粒尺寸先增大后趋于稳定,屈服强度和抗拉强度先升高后降低,断后伸长率先降低后升高。不同退火温度下,试验钢的扩孔率均达到85%以上。工业试制产品具有良好的组织和性能均匀性,其横向屈服强度为396 MPa、抗拉强度为477 MPa、断后伸长率为27.5%、烘烤硬化值为42 MPa、扩孔率大于80%,各项性能均达到标准要求。  相似文献   

9.
对G115钢进行1065~1120℃不同温度的正火处理,研究其显微组织和室温拉伸性能。结果表明:正火温度由1065℃升至1075℃时,抗拉强度由802.91 MPa降至741.15 MPa;正火温度由1075℃升至1105℃时,抗拉强度出现一个"平台",约为798.97 MPa;当正火温度由1105℃升至1120℃时,抗拉强度降至745.13 MPa,屈服强度的变化规律与抗拉强度相似;随正火温度由1065℃升至1095℃,G115钢原奥氏体平均晶粒尺寸由38.40μm减小至34.45μm左右,在1075℃至1095℃亦出现个"平台";当温度升至1120℃时,原奥氏体平均晶粒尺寸为67.64μm。不同正火温度试样均发现较多的富W和Fe元素的Laves相。  相似文献   

10.
基于合金减量化原则,通过热轧+超快冷技术得到了强韧性较好的600 MPa级热轧双相钢,研究了控冷工艺对其组织与性能的影响。结果表明,随着弛豫时间的减少和卷取温度的降低,钢中铁素体体积分数逐渐减少,铁素体晶粒尺寸逐渐减小,抗拉强度由602 MPa 增加至637 MPa,伸长率由31.0%减小至24.0%,屈强比为0.53~0.59,n值为0.17~0.21。综合考虑板形风险和力学性能,试验钢合适的卷取温度为150 ℃,合适的弛豫时间为7 s。  相似文献   

11.
设计了一种低碳抗拉强度为1000 MPa级的工程结构钢,通过使用扫描电子显微镜(SEM)和拉伸试验机等仪器研究了卷取温度对低碳合金钢的组织性能影响。结果表明:终卷取温度对实验钢组织和性能有较大影响,卷取等温温度较高时实验钢的组织以粒状贝氏体为主,卷取等温温度较低时以板条贝氏体为主。随着等温温度的上升,抗拉强度和屈服强度均呈先上升后下降的趋势,卷取温度控制在350℃时,获得最佳的力学性能,屈服强度和抗拉强度分别达到1026 MPa和1118 MPa,伸长率为12.1%。  相似文献   

12.
以一种低碳微合金钢为研究对象,采用热模拟试验对其连续冷却转变规律进行了研究,并通过实验室热轧进行了高强度热轧高扩孔钢的研制与开发。结果表明, 冷速在2~10 ℃/s时,试验钢组织由铁素体和贝氏体构成,随冷却速率增加,铁素体含量降低。实验室热轧卷取后冷却至室温,所得钢板铁素体含量约为76%,铁素体晶粒尺寸约为5.8 μm,抗拉强度大于670 MPa,扩孔率大于90.5%,伸长率大于21.0%。  相似文献   

13.
采用添加Al-Ti-B来改善Mg-15Al-0.8Zn镁合金的铸态组织及力学性能。结果表明:添加0.4%Al-Ti-B对Mg-15Al-0.8Zn镁合金铸态组织的细化效果最好,平均晶粒尺寸由原来的200μm减小到80μm左右,且接近平均尺寸的晶粒数目所占比例明显增加;随着晶粒尺寸的减小,合金的抗拉强度和伸长率都明显提高,抗拉强度由原来的130MPa提高到180MPa,伸长率由原来的1.3%提高到3.5%。  相似文献   

14.
为进一步降低成本和提高生产效率,通过热模拟实验研究了奥氏体化温度、变形温度、冷却速率和卷取温度对抗拉强度650 MPa级Ti-Nb微合金化汽车用钢组织和性能的影响规律,并进行了工业试制。结果表明:随着板坯加热温度的升高,实验钢中的析出物回溶于奥氏体中,使得奥氏体晶粒尺寸逐渐增大,综合考虑奥氏体晶粒尺寸大小和均匀程度,实验钢的最优奥氏体化温度为1 220℃;随着变形温度的升高,实验钢中的铁素体体积分数逐渐减少,晶粒逐渐粗化,实验钢的硬度变化是细晶强化和相变强化综合作用的结果;随着冷却速率的增加,实验钢中铁素体含量逐渐降低且晶粒逐渐细化,实验钢硬度增加;随着卷取温度的升高,实验钢的硬度逐渐降低,在本实验条件下最优的卷取温度为650℃。基于热模拟研究结果,在工业现场成功制备出抗拉强度650 MPa级高强汽车用钢,其组织为铁素体和少量的贝氏体;其屈服强度、抗拉强度、伸长率分别为593 MPa, 676 MPa和24.2%,满足EN 10149.2—1996标准的要求。  相似文献   

15.
采用两种不同浇注温度(1440℃和1520℃)制备了K439B合金,研究了合金晶粒组织、枝晶形貌及相组成,分析了浇注温度对合金显微组织与性能的影响。结果表明:当浇注温度为1440℃时,合金存在个别粗大晶粒,晶粒尺寸均匀性较差,二次枝晶臂间距为53. 0μm,合金的室温抗拉强度和伸长率分别为1169. 0 MPa和7. 4%,815℃/379 MPa持久寿命为71. 0 h;当浇注温度提高至1520℃时,合金晶粒尺寸略有增加,尺寸均匀性有所改善,二次枝晶臂间距提高至61. 2μm,枝晶间隙减小,组织变得致密,同时在晶界析出颗粒状M_(23)C_6型碳化物,室温抗拉强度与伸长率分别提高至1204. 0 MPa和10. 0%,815℃/379 MPa持久寿命达到124. 6 h。  相似文献   

16.
通过轧后控冷至贝氏体等温区间并采用不同等温工艺研究了贝氏体区等温时间对TRIP钢组织性能的影响。研究表明,随着等温时间的延长,残留奥氏体含量和稳定性逐渐降低。各等温工艺下残留奥氏体晶粒尺寸均主要分布在0.1~1μm区间范围内,平均晶粒尺寸随着等温时间的延长有逐渐增大的趋势。贝氏体区等温30 min和60 min时,TRIP钢的力学性能优异,强塑积超过了22000 MPa·%;模拟卷取过程的等温60 min后随炉缓冷至室温时,由于组织中残留奥氏体含量和稳定性大幅度降低,TRIP效应不理想。钢板的力学性能显著恶化,抗拉强度和伸长率仅为847 MPa和20%。  相似文献   

17.
试验研究了超高强度复相钢CP800的相变动力学、热轧工艺和析出行为。结果表明,CP800钢的贝氏体区与铁素体区分离,贝氏体和铁素体区宽广,珠光体区较窄;在400~600℃之间发生贝氏体转变,贝氏体相变的临界转变速率约25℃/s。在不同终轧温度和卷取温度下,CP800钢的屈服强度均高于680 MPa,抗拉强度均高于760 MPa。随着卷取温度的提高,屈服、抗拉强度上升,断后伸长率提高,扩孔率降低。终轧温度由920℃降低至880℃时,强度变化不显著,但断后伸长率显著上升,扩孔率显著下降。随着热处理温度的升高,Ti C的析出导致试验钢的屈服强度和抗拉强度逐步提高,而当热处理温度提高至两相区后,冷却过程中的铁素体相变导致强度急剧降低。  相似文献   

18.
研究了不同奥氏体化温度下含铌热成形钢的组织和性能变化。结果表明,随着奥氏体化温度的增加,热成形钢的抗拉强度呈先升高后下降的趋势。当在850℃奥氏体化7.5 min时,抗拉强度最高可达1758 MPa,屈服强度为1205 MPa,断后伸长率约为6%,且此时马氏体晶粒最为细小,晶粒尺寸约为2.87μm,马氏体板条间距约为322 nm。随着奥氏体化温度的升高,基体组织奥氏化程度逐渐增加,(Nb, Ti)复合碳氮化物析出粒子同时也逐渐发生回溶,奥氏体晶粒粗化。当在930℃奥氏体化5.0 min时,马氏体晶粒增大到4.936μm,马氏体板条间距增大到929.6 nm。  相似文献   

19.
以不同的等温锻造温度和变形量成形了6082-0.5Ti新型铝合金件,并进行了力学性能和显微组织的测试与分析。结果表明,与420℃等温锻造相比,采用480℃等温锻造的试样抗拉强度和屈服强度分别增大29 MPa和26 MPa,断后伸长率减小1.6%,平均晶粒尺寸减小5.7μm;与变形量40%相比,采用60%变形量锻造的试样抗拉强度和屈服强度分别增大25 MPa和19 MPa,断后伸长率减小1.8%,平均晶粒尺寸减小6.1μm。6082-0.5Ti铝合金的等温锻造温度和变形量分别优选为480℃和60%。  相似文献   

20.
用Gleeble-1500热模拟实验机测定了FB钢变形后的CCT曲线,并对实验钢采用不同工艺进行了控轧控冷实验.研究了工艺参数对实验钢力学性能和组织的影响,分析了FB钢的强韧化机制.实验表明,实验钢在较宽的冷却速度范围(大于2℃/s)内可获得贝氏体组织.降低终轧温度可使铁素体晶粒得到细化;提高开冷温度,可使贝氏体体积分数增加,抗拉强度升高;而卷取温度则对屈服强度影响较明显.合理的控轧控冷工艺可使实验钢的强度级别达到600MPa,并具有较高的韧、塑性、扩孔性和合理的屈强比.扩孔实验表明,细化晶粒可提高扩孔率,贝氏体体积分数在20%左右时实验钢扩孔性能较好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号