首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《轻金属》2017,(10)
采用Gleebe-3500热模拟机研究了ZK60镁合金低挤压比棒材(挤压比为15),在变形温度为523~723K、应变速率为0.01~10s~(-1)条件下的热压缩变形行为。分析了应变速率、变形温度对合金流变应力的影响,引入Zenner-Hollomon参数建立了挤压态ZK60镁合金的流变应力本构方程,通过金相观察分析了热压缩过程中的组织演化。结果表明:挤压态ZK60镁合金热变形时的真应力-真应变曲线具有明显的动态再结晶特征;流变应力随着变形速率的提高和变形温度的降低而升高,同时,动态再结晶的晶粒尺寸和体积分数也随之变小;通过本构方程计算,得出在挤压比为15条件下,变形态ZK60镁合金的变形激活能Q为143.025 k J/mol,应力指数n为3.074。  相似文献   

2.
为了研究挤压态ZK60镁合金的热变形行为,利用Gleebe-3500热模拟机在变形温度为523~723 K、应变速率为0.01~10 s~(-1)的条件下对挤压态ZK60合金进行了热压缩变形试验。通过真应力-真应变曲线分析了挤压态ZK60合金流变应力与应变速率、变形温度之间的关系,通过引入Z参数建立了挤压态ZK60合金的流变应力本构方程,并观察了其在热压缩过程中的显微组织变化。结果表明:挤压态ZK60合金的真应力-真应变曲线属于动态再结晶型,并且合金的流变应力在高变形温度或低应变速率条件下较低。在变形温度降低或应变速率升高时,动态再结晶晶粒变小,但动态再结晶进行的不充分,再结晶晶粒分布不均匀。通过本构方程计算出挤压态ZK60镁合金的变形激活能Q=122.884 k J/mol,应力指数n=5.096。  相似文献   

3.
在应变速率为1×10-3~1 s-1、温度为300~450℃条件下,采用Gleeble-3500型热模拟机对Mg-1.3Zn-1.7Ca(质量分数,%)镁合金(ZX115)进行单轴热压缩实验;通过分析ZX115镁合金的真应力-真应变曲线,探讨变形温度和应变速率对其流变曲线中峰值应力、峰值应变及Zener-Hollomom参数的影响,建立描述该合金高温压缩变形的本构方程。将本构方程应用于有限元分析软件DEFORM 3D中,并对ZX115镁合金热压缩过程进行数值模拟,利用后处理程序,分析工件内部的应变速率场、应变场和温度场变化。研究表明:温度越高或应变速率越低时,流变曲线所达到的峰值应力越小,而在相同的应变速率下,峰值应变也随着变形温度的升高而明显减小;ZX115合金热压缩过程具有明显的变形不均匀性,为了合理控制变形后的再结晶晶粒尺寸,可适当降低形变温度和应变速率。  相似文献   

4.
ZK60镁合金热压缩变形流变应力行为与预测   总被引:4,自引:0,他引:4  
在变形温度为523---673 K, 应变速率为0.001---1 s-1的条件下, 采用Gleeble--1500热模拟试验机对ZK60镁合金的热变形行为进行了研究. 结果表明, ZK60镁合金流变应力随变形温度升高和应变速率的降低而减小. 其高温压缩流变应力曲线可描述为加工硬化、过渡、软化和稳态流变4个阶段, 但在温度较高和应变速率较小时, 过渡阶段不很明显. 建立了一个包含应变的流变应力预测模型, 模型中的9个独立参数可以通过非线性最小二乘法拟合求得, 预测的流变应力曲线与实验结果吻合较好.  相似文献   

5.
镁合金Mg-Zn-Y-Zr的高温变形及本构方程   总被引:1,自引:0,他引:1  
采用Gleeble-1500热模拟试验机对铸态镁合金Mg-Zn-Y-Zr在变形温度为250~450℃,应变速率为0.001~1s-1条件下的高温压缩变形行为进行研究,利用双曲正弦关系描述了该合金的本构方程。结果表明,Mg-Zn-Y-Zr合金的高温流动应力-应变曲线主要以动态回复和动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;在真实应力-应变曲线基础上,建立的Mg-Zn-Y-Zr合金高温变形的本构模型较好地表征了其高温流变特性。  相似文献   

6.
为了合理制定35MnB钢制件热成形工艺参数,在790~1190℃温度范围内,应变速率为0.01~10 s~(-1)及总压缩变形量(真实应变)为0.6的试验条件下,采用Gleeble-1500D热模拟试验机对35MnB钢进行热压缩变形试验,研究其高温变形行为。结果表明:流变应力随着温度的升高而减小,随着应变速率的增大而增大。同一应变速率下,随着变形温度的升高应力峰值向左移动,应力-应变曲线整体下移;同一变形温度下,应变速率越大,应力峰值越高,相应的应变量也越大。采用含有变形温度(T)和变形激活能(Q)的Arrhenius equation方程的双曲正弦模型,构建了35MnB钢在高温下流变应力与应变速率的本构方程。并验证了所构建本构方程的准确性,计算结果显示预测应力峰值与试验应力峰值吻合较好。通过采用本文所构建的35MnB钢本构方程对大型液压装载机锻造摇臂成形过程进行模拟,结果证明本文所构建的本构方程可以应用于35MnB钢制件高温成形模拟过程,并为实际生产做指导。  相似文献   

7.
在变形温度300~450℃,应变速率0.005~1 s-1条件下,采用Gleeble-1500D热/力模拟试验机对AZ41M镁合金进行热压缩实验;结合微观组织,分析了变形温度、应变速率等对流变应力的影响;基于双曲正弦关系建立了流变应力本构方程,并对本构方程进行验证。结果表明,该镁合金为温度及应变速率敏感型材料,且其流变曲线具有明显的动态再结晶特征;压缩过程中AZ41M镁合金峰值应力随变形温度升高而减小,随应变速率升高而增大;实验条件下,由所建立的本构方程计算出的峰值应力与实验值基本吻合,绝对值最大平均相对误差仅为2.666%。  相似文献   

8.
为研究挤压态ZK61M镁合金的热变形行为,采用Gleeble-3800热模拟机在温度为300~450℃、应变速率为0. 001~0. 5 s~(-1)的条件下进行热压缩实验,分析了变形温度、应变速率对流变应力的影响,并对铸态镁合金和挤压态镁合金的变形激活能进行了研究对比,最终将本构方程应用于模拟软件中进行量化验证。结果表明,该合金的流变应力与变形温度负相关,与应变速率正相关,应力-应变曲线拥有动态回复和再结晶的特点。Mg-Zn-Zr系变形镁合金相对类似成分的铸造镁合金,具有更低的变形激活能,如ZK61M,大约为120 kJ·mol~(-1),且Mg-Zn-Zr系镁合金成分是决定变形激活能大小的主要因素,成分相同时,材料的变形激活能基本相近,模拟曲线与实验曲线趋势具有一致性,应力峰值接近。通过Arrenhenius本构方程计算出挤压态ZK61M镁合金的变形激活能Q=122. 685 kJ·mol~(-1),应力指数n=4. 13652,为Mg-Zn-Zr系变形镁合金的热加工工艺参数和制备提供了理论指导。  相似文献   

9.
在变形温度为200~400℃、应变速率为0.001~1s-1条件下,对ZK60镁合金进行热压缩实验,建立一个单隐层前馈误差反向传播人工神经网络模型,研究该镁合金的流变行为。模型的输入参数分别为变形温度、应变速率和应变,输出为流变应力,中间隐含层包含23个神经元,并采用Levenberg-Marquardt算法对此网络模型进行训练。结果表明:ZK60镁合金的流变应力随变形温度升高和应变速率降低而减小;其高温压缩流变应力曲线可描述为加工硬化、过渡、软化和稳态流变4个阶段,但在较高温度和较低应变速率时,过渡阶段不很明显;所建神经网络模型可以很好地描述ZK60镁合金的流变应力,其预测值与实验值吻合很好;利用该模型预测的变形温度和应变速率对流变应力的影响结果与一般热加工理论所得结果一致。  相似文献   

10.
通过Gleeble热模拟机,在变形温度250~500℃、应变速率0.005~5 s-1下对挤压态镁合金进行热压缩实验,得到应力-应变曲线,基于加工硬化与软化机制,分析了温度和应变速率对流变曲线及峰值应力的影响。其次,考虑变形中温升,在高应变速率下采用温度补偿修正流变应力。最后,运用双曲正弦模型构建不同流变应力范围的本构模型,得到流变应力与温度、应变速率和应变的定量关系。将模型预测应力值与实验值进行对比。结果表明:实验值与预测值的相关性系数为0.984,平均相对误差绝对值为3.87%,说明所建立的本构模型能够准确预测成形过程中不同变形量下镁合金的流变应力值。  相似文献   

11.
采用Gleeble 1500D热模拟试验机对ZK60-1.0Er镁合金的热压缩变形行为进行了研究。热压缩参数应变速率?为0.0001,0.001,0.01和1.0 s~(-1);变形温度T为160,260,320和420℃。结果表明:ZK60-1.0Er镁合金的热压缩变形过程主要为动态回复DR和动态再结晶DRX。通过Zener-Hollomon参数建立了ZK60-1.0Er镁合金热压缩本构方程,根据本构方程计算的理论应力值与实际应力值吻合;同时还根据材料动态模型建立了该种合金的热加工图,并且通过对微观组织的观察和分析可知:该种镁合金的热加工图包含低温高应变速率和高温低应变速率2个失稳区域。该种镁合金适宜的热加工区间为:225~420℃,0.01~1.0 s~(-1),在该区域内存在1个功率耗散效率的峰值,η_(max)=45%。稀土相的存在促进了ZK60-1.0Er镁合金的动态再结晶形核,平均变形激活能Q=152.5 k J/mol,该合金的微观变形机制为晶界滑移和晶格自扩散导致的动态回复和动态再结晶。  相似文献   

12.
利用Gleeble-1500D热模拟试验机,采用等温压缩试验,研究了Cu-Fe-P-Zn-Sn-Mg合金在变形温度为750~950℃、应变速率为0.01~10s-1条件下的流变应力的变化规律,测定了其真应力-应变曲线,并分析了合金在热压缩过程中的组织演变规律。结果表明,合金的真应力-应变曲线具有典型的动态再结晶特征,其流变应力随变形温度的降低以及应变速率的提高而增大,且变形温度越高、应变速率越小,合金越容易发生动态回复和再结晶。在试验基础上,计算并建立了合金热变形过程中流变应力与变形温度和应变速率之间关系的热压缩高温变形本构方程。  相似文献   

13.
采用Thermecmastor-Z热模拟试验机在变形温度为200~520℃、应变速率为2~60 s-1条件下对AZ31B镁合金厚板进行热压缩变形试验,压缩变形量为60%。结合变形后的微观组织以及热压缩真应力-真应变曲线,分析应变速率和变形温度等工艺参数对其微观组织演变的影响。结果表明:当变形温度高于320℃时,AZ31B镁合金的真应力-真应变曲线呈现典型的动态再结晶特性。当应变速率一定时,流变应力随温度升高而降低;当变形温度一定时,流变应力在高温低应变速率(低于15 s-1)下随应变速率增大而增大。变形后的微观组织显示,压缩变形过程中发生了明显的动态再结晶,动态再结晶体积分数随应变速率的增加而增大。另外,变形组织的均匀性受变形温度的影响十分显著。在热压缩实验的基础上,在温度为300~330℃时对板材进行单道次大压下量的热轧,获得的板材具有均匀细小的晶粒及优异的力学性能。  相似文献   

14.
为研究2219铝合金的热变形行为,采用THERMECMASTOR型热模拟试验机,在温度380~460℃,应变速率0.01~10 s-1条件下进行了热压缩实验,获得了2219铝合金的真实应力-真实应变曲线。结果表明,变形温度和应变速率对2219铝合金流变应力有重大影响。在相同应变速率条件下,随着变形温度的升高,流变应力逐渐减小;在相同变形温度条件下,随着应变速率的增大,流变应力不断增大。为准确描述流变应力与变形温度和应变速率之间的关系,对2219铝合金热压缩获得的实验数据进行拟合,建立了基于应变补偿的双曲正弦本构方程。通过准确度的计算,得到实验值与预测值的绝对误差为4.78%,表明该本构方程能够较好地预测高温下2219铝合金的流变行为。  相似文献   

15.
在Gleeble 3500热模拟试验机上对锻态TB9钛合金在变形温度1 003~1 103 K、变形速率1~0.001 s-1进行了等温压缩变形处理。基于真应力-应变曲线建立了锻态TB9钛合金高温变形稳态流变方程。结果表明,TB9钛合金的峰值应力随变形温度的提高和应变速率的减小而降低,达到峰值应力后,在加工硬化和流变软化共同作用下进入稳态流变阶段;获得了锻态TB9钛合金高温变形的本构方程。  相似文献   

16.
30Cr3MoV钢热压缩流变应力行为研究   总被引:2,自引:0,他引:2  
利用Gleeble-3500进行热模拟压缩实验,对低合金钢30Cr3MoV在1173~1473 K变形温度以及0.1-10 s(-1)应变速率条件下的高温流变应力行为进行了研究.通过对真应力-真应变曲线进行分析得到该材料的形变激活能、流变应力本构方程以及峰值应变和峰值应力与变形温度、应变速率之间的关系方程.  相似文献   

17.
ZK60镁合金热变形过程中的动态再结晶动力学   总被引:2,自引:0,他引:2  
采用Gleeble-1500热模拟机对ZK60镁合金在温度为200~400℃、应变速率为0.001~10s-1、最大变形量为60%的条件下进行恒应变速率高温压缩实验,研究高温变形过程中合金的动态再结晶行为;采用EM模型描述合金的动态回复曲线,以此为基础,得出ZK60合金热压缩过程中的动态再结晶动力学Avrami方程.利用有限元模拟合金热压缩过程中的动态再结晶.结果表明ZK60合金热压缩过程中由于存在动态再结晶的软化作用,流变应力达到峰值后逐渐减小,并最终达到稳态;随着变形量的增加和变形温度的升高,动态再结晶体积分数增加,合金变形更加均匀;随着应变速率的增加,动态再结晶分数有所减小,且.变形也更不均匀.  相似文献   

18.
采用低能球磨和热压烧结工艺制备了Ti B_w/Ti60复合材料,在Gleeble 3500热模拟试验机上进行了热机械加工变形试验,绘制了流变应力-应变曲线,建立了压缩本构方程,表征了不同压缩变形工艺参数的复合材料的显微组织。结果表明,Ti B_w/Ti60复合材料相变点为1 050~1 075℃;在压缩变形温度为950、1 000、1 050和1 100℃时,Ti B_w/Ti60复合材料的高温压缩应力-应变曲线中均无流变失稳现象,随着压缩变形温度的升高和应变速率的减小,稳态流变应力和峰值流变应力不断降低。  相似文献   

19.
采用Gleeble-3500热模拟试验机在温度为400℃~500℃,应变速率为0.01 s~(-1)~10 s~(-1)条件下对Al-7.0Zn-2.9Mg合金进行热压缩试验,研究该合金的热变形行为及热加工特征,建立了应力-应变本构方程和加工图。结果表明,Al-7.0Zn-2.9Mg合金在热压缩变形过程中,随着应变速率的增加和变形温度的降低,合金流变应力逐渐增大,流变应力达到峰值后曲线呈现稳态流变特征;合金在试验条件下的平均变形激活能为157.8 k J/mol。真应变为0.5的加工图表明,该合金在400℃~500℃高温变形时安全区域主要存在于低应变速率的条件下,较合适的加工温度为450℃~475℃,应变速率为0.1 s~(-1)~0.01 s~(-1)。  相似文献   

20.
利用Gleeble-1500D热模拟机在250~450℃、应变速率0.002~2 s~(-1)、变形量为50%的条件下对Mg-5.1Sn-1.5Y-0.4Zr合金进行高温压缩模拟试验。根据应力-应变曲线分析了该合金流变应力变化特点,建立了流变应力本构方程和动态再结晶晶粒尺寸模型。结果表明:该合金在高温压缩变形时,随应变速率的增大和变形温度的降低,峰值应力不断增大而动态再结晶晶粒尺寸不断减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号