首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对白芨沟煤矿0102102首分层工作面煤层赋存条件复杂,瓦斯含量高、瓦斯涌出量大、瓦斯灾害严重等问题,提出采用顺层钻孔、穿层钻孔等预抽方式,降低煤层瓦斯含量;采用分源预测法对工作面回采时的绝对瓦斯涌出量进行预测,提出了本煤层、邻近层和采空区抽采的综合瓦斯治理措施。结果表明:预抽后工作面瓦斯含量由21.77 m~3/t降至8.17 m~3/t,工作面回采时绝对瓦斯涌出量为100.8 m3/min,计算得到了工作面回采期间各种抽采方式瓦斯抽采量分配表,保证了工作面的安全回采。  相似文献   

2.
白亮 《山东煤炭科技》2022,(3):88-89+97
为了解决辰通煤业回采工作面瓦斯涌出量大、上隅角瓦斯浓度高的问题,结合矿井瓦斯涌出特点和二盘区地质情况,通过实施本煤层预抽、上隅角抽采和邻近层瓦斯抽采相结合的多位一体瓦斯抽采方法,分别对回采工作面煤层瓦斯、采空区瓦斯和邻近层瓦斯进行抽采,从而控制回采工作面瓦斯涌出量,实现了回采工作面安全开采。  相似文献   

3.
针对白芨沟煤矿2621-1工作面煤层赋存条件复杂、原始瓦斯含量高、瓦斯涌出量大、瓦斯灾害严重等问题,在回采前采用顺层走向长钻孔、底板穿层钻孔和本煤层顺层钻孔等相结合的"立体"预抽瓦斯方法,降低煤层原始瓦斯含量;在回采期间采用高位钻孔、联络巷、上隅角插管和大孔径穿层钻孔抽采上覆采空区瓦斯相结合的综合治理措施。上述措施实施后,工作面煤层瓦斯含量大幅下降,工作面回采时绝对瓦斯涌出量最大为79.76 m3/min,回采期间工作面回风瓦斯体积分数最大为0.51%,上隅角瓦斯体积分数最大为0.68%,保证了工作面的安全回采。  相似文献   

4.
赵文曙  赵泽辉 《煤》2021,30(2):75-77
西铭矿为防止近距离煤层开采时瓦斯超限,确保48710工作面安全高效生产,从顶底板应力环境和瓦斯来源空间分布两个方面对近距离煤层开采时瓦斯来源进行分析。基于北七采区其他工作面回采期间瓦斯涌出量情况,预计48710工作面回采期间绝对瓦斯涌出量为18.18 m 3/min,并制定了本煤层顺层钻孔抽采和底抽钻孔穿层抽采的瓦斯治理措施,现场瓦斯抽采结果表明:本煤层顺层钻孔和底抽钻孔平均瓦斯抽采浓度分别为10.58%和43.12%,平均瓦斯抽采纯量分别为1.16 m 3/min和8.84 m 3/min,工作面瓦斯抽采率达55%,为工作面安全高效生产提供了保障。  相似文献   

5.
东曲煤矿12418工作面掘进时的瓦斯涌出为回采期间最大绝对瓦斯涌出量16m3/min,其中抽采量9.6m3/min,抽采率为60%,因此该工作面必须采取抽采治理瓦斯措施。根据东曲煤矿12418综采工作面所采煤层情况及瓦斯含量特点,分析了回采期间最大绝对瓦斯涌出量,提出了合理的瓦斯抽采系统,确保了工作面安全生产,为类似工作面瓦斯治理提供依据。  相似文献   

6.
孙振军 《中州煤炭》2019,(10):30-32,36
为了研究煤层瓦斯运移规律,确保矿井的安全生产,采用FLAC和Fluent数值模拟相结合的方法,分析了多孔介质瓦斯运移特征,研究了回采工作面瓦斯来源,主要由开采层瓦斯涌出和邻近层瓦斯涌出2部分组成,得到了煤层初始瓦斯含量与残存量的关系以及回采工作面瓦斯涌出量预测结果,模拟分析了不同钻孔直径下的周围煤体塑性区分布以及不同钻孔直径下抽采钻孔抽采影响范围。研究为实现煤与瓦斯共采提供了借鉴。  相似文献   

7.
《煤炭技术》2017,(8):146-148
青龙煤矿煤层透气性低,回采工作面瓦斯经长时间预抽仍无法消除突出危险,造成工作面回采期间瓦斯涌出量增加,严重影响生产进度。青龙煤矿采取"穿层钻孔+顺层钻孔"立体抽采本煤层瓦斯、"高位钻孔+采空区埋管"抽采采空区瓦斯的综合治理模式,有效地治理了工作面瓦斯涌出,杜绝了工作面回采期间瓦斯超限现象,提高了工作面的生产效率。  相似文献   

8.
郭村煤矿12041综采放顶煤工作面主采山西组二1煤层,本煤层瓦斯含量高,煤层透气性系数低,属于难以抽采的三软煤层,工作面巷道单一布置顺层钻孔成孔困难,抽采效果差,因此回采过程中瓦斯涌出量大,上隅角瓦斯超限频繁。在掌握工作面上隅角瓦斯涌出规律的基础上,提出了高位钻场、上隅角顶板插管、工作面浅孔抽放、煤层注水等综合措施,有效控制了上隅角瓦斯异常涌出,提高了工作面安全生产效率。  相似文献   

9.
针对华润大宁煤矿401工作面煤层瓦斯地质条件,采用本煤层顺层钻孔采前预抽、边采边抽和顶板高抽巷抽采采空区瓦斯的综合抽采工艺,基本解决了工作面回采期间瓦斯涌出量大的问题,确保了工作面的安全回采。  相似文献   

10.
针对腾晖煤业42200采煤工作面瓦斯含量较高的问题,采用理论计算和工程经验针对瓦斯含量及治理技术进行研究,工作面回采时预测本煤层绝对瓦斯涌出量为6.27m3/min,邻近层绝对瓦斯涌出量为7.08m3/min;采用“本煤层预抽、上邻近层裂隙带钻孔抽采、顶板孔抽采和大孔径钻孔抽采”技术方案进行瓦斯治理,通过现场瓦斯浓度监测,可知此技术方案可以有效防止瓦斯聚集问题,保证工作面安全生产。  相似文献   

11.
260051工作面处于米村煤矿7个高瓦斯区之首的Ⅰ#高瓦斯区带。随着工作面的回采,瓦斯涌出量骤然增大,地质条件日益复杂,煤层厚度逐渐增大,煤质松软,煤层瓦斯含量和压力大幅度升高,绝对瓦斯涌出量由原0.4 m3/min猛增至3.5 m3/min左右。为保证260051工作面的安全回采,采取本煤层顺层钻孔抽放、采空区钻孔抽放等瓦斯综合治理技术。经过治理,根除了存在的诸多事故隐患,确保了工作面的安全回采。  相似文献   

12.
上良煤业工作面瓦斯涌出量大,已成为制约生产及安全的主要因素。测定了煤层瓦斯含量,根据分源预测法计算工作面瓦斯涌出量,分析工作面瓦斯涌出来源及构成;针对邻近层瓦斯涌出量占3303工作面瓦斯涌出量比例较大的特点,设计钻孔参数及抽采工艺,采用高位钻孔抽采技术抽采邻近层瓦斯,为工作面瓦斯治理提供技术保证。  相似文献   

13.
高瓦斯煤层综采工作面回采过程中,瓦斯治理是保证安全生产的一个重要环节,综合采用采前预抽和边采边抽能有效地减少工作面回采期间本煤层瓦斯涌出量,确保高瓦斯煤层工作面的安全顺利回采,实现高产高效。  相似文献   

14.
唐开敏  卞金岭  李杰 《中州煤炭》2019,(2):14-18,22
针对薄煤层快速回采工作面瓦斯涌出量大,工作面上隅角、回风流等多处局部瓦斯超限现象,采用分源瓦斯分析方法,确定工作面瓦斯来源及含量,并采用本煤层预抽、高位顶板裂隙抽放、采空区插管埋管抽放等综合抽放瓦斯措施,对工作面瓦斯进行综合治理。试验结果表明:综合抽放瓦斯措施分别解决了快速回采期间落煤及采动引起的工作面瓦斯涌出量大、上邻近层卸压瓦斯向采空区大量涌入、下邻层卸压瓦斯向采空区涌入、U型通风工作面上隅角瓦斯聚集和超限问题。薄煤层快速回采工作面瓦斯综合抽采技术能够有效治理矿井瓦斯,不仅实现了薄煤层工作面安全高效开采,同时为类似矿井瓦斯治理提供了借鉴。  相似文献   

15.
高瓦斯矿井近距离煤层群下邻近层瓦斯治理方法研究   总被引:1,自引:0,他引:1  
高瓦斯矿井近距离煤层群上部煤层开采时,工作面瓦斯涌出以下邻近层为主,采用传统采空区抽采方法存在一定局限性,尤其是薄煤层开采时瓦斯抽采效果不理想。根据山西省吕梁矿区神州矿井煤层赋存条件、瓦斯涌出量预测结果,分析了矿井回采工作面瓦斯涌出的构成特点,并结合煤层、瓦斯赋存情况,提出"在下邻近煤层布置抽采巷道,施工顺层钻孔进行拦截抽采"的瓦斯治理方法。该抽采方法能够实现从源头上治理瓦斯的目的,能有效地保证工作面的回采安全。  相似文献   

16.
马淑胤 《中州煤炭》2023,(3):134-139+143
针对某矿703综采工作面瓦斯涌出问题,在工作面回采前先对工作面进行顺层孔致裂卸压增透,再施工工作面顺层抽采钻孔治理本煤层瓦斯涌出。结果表明,未压裂区域煤层原始瓦斯含量为6.68 m3/t,压裂区域煤层瓦斯含量约为3.59 m3/t;未压裂区域煤层原始瓦斯压力为0.4 MPa,压裂区域煤层瓦斯压力约为0.14 MPa;未压裂区域煤层透气性系数为0.007 3 m2/(MPa2·d-1),压裂区域煤层透气性系数为0.024 2 m2/(MPa2·d-1),与未压裂区域相比,压裂区域的瓦斯抽采浓度和抽采纯量都有大幅度的提高;703工作面采取措施前,回采工作面相对瓦斯涌出量16.6 m3/t,绝对瓦斯涌出量84.01 m3/min;而703工作面采用综合瓦斯治理措施情况下,回采工作面相对瓦斯涌出量13.29 m3/t,绝对瓦斯涌出量60.28 m...  相似文献   

17.
临涣煤矿为煤与瓦斯突出矿井,主采7、9、10煤层均为突出煤层。正在回采的Ⅱ923工作面受邻近层和本煤层瓦斯涌入影响,工作面瓦斯涌出量相对较大,最大瓦斯涌出量达到16 m3/min。为确保工作面的安全回采,采取了高位钻孔及老塘埋管相结合的瓦斯抽放方法,并确定了老塘埋管的抽放半径为12 m,高位钻孔最佳抽放层位为距煤层9~14 m、抽放半径控制在17 m。抽放系统建成后,大幅度减少了瓦斯向工作面的涌入,有效解决了瓦斯超限问题,保证了工作面的安全回采。  相似文献   

18.
赵文利  王光伟 《山西煤炭》2015,(3):34-35,55
通过对阳泉地区某矿15号煤层采煤工艺和采煤系统的介绍,及瓦斯涌出规律的研究,较准确的预测了15号煤层瓦斯涌出量,在工作面的瓦斯涌出总量中,开采层工作面占整个开采工作面瓦斯涌出的大致34%,邻近层瓦斯涌出量,大致为22.21~22.81 m3/min,占整个回采工作面瓦斯涌出的大致66%,并介绍了该生产矿,回采工作面瓦斯抽放的技术特征,为周边矿井的瓦斯防治工作,提供一些参考价值。  相似文献   

19.
为了解决文家坡矿井4号煤层瓦斯涌出量大的问题,采用井下实测瓦斯数据与地勘数据相结合的方式,分析了4号煤层瓦斯赋存规律,计算出了4号煤层最大瓦斯含量,推导出了矿井最大瓦斯涌出量为142.17 m3/t,并根据矿井瓦斯涌出量的构成分析,得出了掘进工作面瓦斯预抽、回采工作面瓦斯预抽、邻近层瓦斯抽采、采空区瓦斯抽采方案,有针对性地设计了矿井瓦斯治理的技术方案,预计了矿井瓦斯抽采率为51.90%,满足抽采达标要求,为矿井的安全开采提供了可靠的依据,保障了矿井的安全生产。  相似文献   

20.
南庄煤矿15~#煤层8830综采工作面上邻近层13~#、14~#煤层以及K_2、K_3石灰岩瓦斯含量高,在工作面开采过程中上邻近层瓦斯会大量涌出到工作面,严重影响着工作面的安全生产。南庄煤矿通过抽放上层12~#煤层采空区作为开采15~#煤层8830工作面的高抽系统控制高位瓦斯,利用本工作面回风巷低位钻孔、回风巷管路向采空区留管抽放作为辅助抽放,瓦斯综合抽放效果显著,有效解决了回采期间的瓦斯问题,从而保证了8830工作面安全生产的目的,对具有相似条件的煤矿综采工作面的瓦斯抽采具有参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号