首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2Cr13钢的表面气体渗氮处理   总被引:1,自引:0,他引:1  
用光学金相显微镜、扫描电子显微镜、X射线衍射(XRD)仪及显微硬度计对经气体渗氮处理的2Cr13钢试样进行了组织结构分析,并利用销-盘摩擦磨损试验机对渗氮的盘与未渗氮销摩擦副进行摩擦磨损试验.结果表明,520℃×20 h渗氮可使2Cr13马氏体不锈钢的渗氮层深度达到165 μm,处理后试样的显微硬度约为处理前的2.5倍.处理后试样的耐磨性能得到了较大的提高,渗氮盘试样的磨损表面未出现裂纹,而未渗氮销的磨损表面存在严重的裂纹.  相似文献   

2.
处理温度对1Cr18Ni9Ti钢脉冲直流等离子渗氮的影响   总被引:5,自引:0,他引:5  
利用脉冲直流辉光等离子技术,在不同的温度下对1Cr18N i9Ti奥氏体不锈钢进行了渗氮处理。利用光学显微镜、显微硬度计、XRD以及电化学工作站对渗氮层进行了分析。结果表明,处理温度显著影响1Cr18N i9Ti钢渗氮层的结构与性能。处理温度≤440℃时,渗层为纯S相结构;处理温度在460~540℃之间时,为S相+CrN+Fe4N的混合组织;处理温度≥560℃时,为CrN+Fe4N的化合物层。可在较宽的温度范围内对该钢进行脉冲直流等离子渗氮,获得表面硬度高于基底5~6倍的渗氮层。渗氮层的厚度随处理温度的升高而增加,而抗腐蚀性能随着处理温度的升高呈下降趋势。  相似文献   

3.
《铸造》2016,(8)
为提高马氏体不锈钢0Cr13Ni4Mo的耐磨性,对水泵叶片进行表面处理,具体为分别在450℃、480℃和510℃对其进行2 h的盐浴渗氮。使用显微硬度计、XRD衍射仪、光镜、电化学工作站、摩擦磨损试验机及SEM等设备,研究了渗氮温度对0Cr13Ni4Mo钢的表面物相、硬度、渗层显微形貌、耐蚀性以及耐磨性的影响。结果显示:随着渗氮温度升高,物相由氮原子在马氏体中的过饱和固溶体α'N转变为Cr N和γ'相,材料点蚀电位下降,同时表面硬度增加,510℃处理后可达HV 1 200,渗层厚度为20μm,Cr N相大量析出,点蚀电位下降360 m V,磨损体积为未渗氮样品的17.6%,减磨效果明显。  相似文献   

4.
离子渗氮温度对不锈钢组织及性能的影响   总被引:1,自引:1,他引:1  
对1Cr18NigTi、1Cr13、0Cr18Ni9不锈钢进行了不同温度的离子渗氮.利用金相显微镜及扫描电镜观察了渗氮层显微组织形貌;利用能谱仪测试了渗层中元素的含量及分布情况;利用HVS-1000型数显显微硬度计测定了渗层不同深度处的硬度变化;采用改制的摩擦磨损试验机测试了渗氮层的摩擦磨损特性;利用盐雾腐蚀试验箱测试了渗氮层的耐腐蚀性.结果表明,随渗氮温度增加,3种钢的渗层表层组织中氮化物量减少,高氮浓度的ε相转变为γ'相,440 ℃渗氮形成了氮在基体中的过饱和固溶相;1Cr13不锈钢比1Cr18Ni9Ti及0Cr18Ni9不锈钢的渗层厚;渗层表面硬度降低,但从表面向心部的峰值硬度增加;在一定范围内渗层耐磨性降低,但比未渗氮试样均提高4倍左右;渗层的耐盐雾腐蚀性降低,但440℃的低温渗层的耐蚀性与未渗氮试样差不多.  相似文献   

5.
处理温度对1Crl8Ni9Ti钢脉冲直流等离子渗氮的影响   总被引:1,自引:0,他引:1  
利用脉冲直流辉光等离子技术,在不同的温度下对1Cr18Ni9Ti奥氏体不锈钢进行了渗氮处理。利用光学显微镜、显微硬度计、XRD以及电化学工作站对渗氮层进行了分析。结果表明,处理温度显著影响1Cr18Ni9Ti钢渗氮层的结构与性能。处理温度≤440℃时,渗层为纯S相结构;处理温度在460~540℃之间时,为S相+CrN+Fe4N的混合组织;处理温度≥560℃时,为CrN+Fe4N的化合物层。可在较宽的温度范围内对该钢进行脉冲直流等离子渗氮,获得表面硬度高于基底5~6倍的渗氮层。渗氮层的厚度随处理温度的升高而增加,而抗腐蚀性能随着处理温度的升高呈下降趋势。  相似文献   

6.
以纯氮气为气源,在Ti6Al4V合金表面进行离子渗氮而形成渗氮层。对渗氮层的显微组织、相结构及显微硬度等进行了分析,并用MMW-1A摩擦磨损试验机对渗氮层的摩擦学性能进行了研究。结果表明:在纯氮气、850℃的渗氮条件下,渗氮层主要由化合物Ti N、Ti2N和α-Ti等相组成;渗氮层的硬度较基体材料有较大提高;在滑动摩擦磨损试验中,渗氮层虽无减摩效果,但其耐磨性较基材大幅提高;未渗氮处理试样的磨损机理是磨粒磨损和局部的粘着磨损,渗氮后试样的磨损机理是磨粒磨损和局部的疲劳剥落。  相似文献   

7.
对316L不锈钢进行了QPQ(Quench-Polish-Quench)处理,研究了600℃渗氮温度下保温(60、90、120、150和180min)后渗层的组织和性能。利用光学显微镜、SEM、XRD、显微维氏硬度计和摩擦磨损机分析材料渗层的显微组织、物相、硬度和耐磨性。结果表明,316L不锈钢经QPQ处理后,渗层表面氧化层由Fe3O4组成,中间化合物层的物相主要包括Fe2~3N、Fe4N、Cr N和α-N相,靠近基体的扩散层主要由Cr N和γN相组成。随着渗氮时间延长,化合物层厚度从60 min的16.54μm增加到180 min的34.94μm,化合物层厚度与渗氮时间呈抛物线关系。与未处理试样相比,QPQ处理试样硬度值提高了4~6倍。干摩擦磨损测试表明,未处理试样表面发生粘着磨损,磨损量和磨损率较大;渗氮后150 min试样耐磨性最好。  相似文献   

8.
对AISI 304L不锈钢在450和500℃离子渗氮处理进行了研究,分析了渗氮对析出相、硬度、厚度、冲蚀磨损和高压釜中微动磨损性能的变化。详细分析了渗氮试样在垂直粒子冲蚀下的耐冲蚀磨损性能,并探讨了其冲蚀磨损机制。结果表明,渗氮层有γN和Cr N相析出;450℃和500℃下的渗层厚度分别为2和20μm;渗氮层的硬度都高于1000 HK。渗氮试样在高压釜中的耐微动磨损性能有大幅度的提高,尤其是450℃离子渗氮处理的试样,比未处理试样提高了29.4倍。  相似文献   

9.
在双相不锈钢等离子体渗氮表面改性过程中,为了避免N原子与Cr原子结合形成CrN的析出使基体中Cr元素含量减少进而降低双相不锈钢的耐蚀性能,通常渗氮温度选取低于450℃。温度低,N原子的扩散速率慢,存在渗氮时间长,渗氮层较薄等问题。对SS2205双相不锈钢在不同时间进行了高温快速离子渗氮研究,结果表明:在540℃条件下,渗氮时间为1h时,可得到8μm厚且没有明显CrN析出的渗氮层,使其表面硬度显著提高;与440℃、4h条件下得到的渗氮层相比,厚度增加了一倍,表面硬度提高50%左右,且耐点腐蚀性能并没有严重下降。  相似文献   

10.
目的提高40Cr齿轮在重载低速下的摩擦学性能。方法采用离子渗氮和电弧离子蒸发镀(AED)技术在40Cr钢基体上制备了渗氮层和Cr N涂层。用X射线衍射仪、扫描电子显微镜、能谱仪和往复式摩擦磨损试验机,研究了经两种表面处理后40Cr钢的物相组成、形貌和摩擦学性能。结果渗氮样品表面化合物层厚度约10μm,硬度约为558HV。Cr N涂层表面厚度约为4μm,涂层硬度约为1341HV。在60 N载荷的条件下,渗氮处理后40Cr钢的磨损率为104.17×10-6 mm3/(N·m),其磨损机理主要为轻微的粘着磨损和磨粒磨损;制备Cr N涂层后40Cr钢的磨损率为17.36×10-6 mm3/(N·m),其磨损机理主要为轻微的磨粒磨损。结论在20~60 N法向载荷下,制备Cr N涂层后,40Cr钢均表现出最优异的耐磨减摩性能。  相似文献   

11.
目的 在AISI 300系列奥氏体不锈钢表面制备单一S相渗氮层,提高该系列不锈钢渗氮层的硬度、抗磨损性能,对比揭示渗氮前后不锈钢的磨损机制。方法 采用低温辉光等离子渗氮技术(LTPNT)在AISI 300系列奥氏体不锈钢表面制备渗氮层。利用光学显微镜(OM)、扫描电子显微镜(SEM)、电子探针(EPMA)、X射线衍射仪(XRD)分析渗氮层的截面形貌、元素分布和物相组成;通过比磨损率和磨痕形貌分析渗氮层的摩擦学性能;利用电化学实验考察渗氮前后3种不锈钢的耐蚀性。结果 AISI 300系列奥氏体不锈钢经380 ℃、12 h处理后,其表面获得了厚度为15 μm左右、与基体致密结合、组织成分均匀的渗氮层;渗氮层的相结构主要为S相,无CrN相析出;经渗氮后,该系列不锈钢表面硬度均为1 100HV左右,较基体硬度提高了5倍左右;不锈钢基体的磨损机理为黏着和磨粒磨损,经渗氮后转变为氧化磨损和微切削;渗氮层的比磨损率约为不锈钢基体的1/20,抗磨损的能力得到显著提升;在25 ℃环境温度下渗氮后,304L、316L和321的自腐蚀电位下降,腐蚀电流密度增加,腐蚀速率加快,耐腐蚀性能稍有降低。通过对比腐蚀形貌发现,渗氮层仍具有一定的耐蚀性能。结论 通过LTPNT可以获得高硬度、组织均匀致密、结合强度高的渗氮层,渗氮层中S相的存在可以显著提高AISI 300系列奥氏体不锈钢的表面硬度、抗磨损能力,降低其摩擦因数和比磨损率,对延长不锈钢的服役寿命有着积极的作用。  相似文献   

12.
用气体渗氮+淬火(N+Q)复合处理技术对GCr15进行表面强化,并与单纯的气体渗氮、淬火进行比较,系统研究了硬化层的物相、组织结构及干摩擦特性。结果表明:530℃气体渗氮9 h后,渗氮层的化合物层为ε相,厚度约为40μm;而渗氮之后淬火(N+Q)复合处理使氮化物完全分解,促使N元素向基体扩散,扩散区深约900μm,N固溶强化作用使得扩散区硬度比淬火硬度约高200 HV0.1,但是因氮化物分解产生孔隙致使表层硬度下降。分别在20 N和100 N载荷进行往复干摩擦试验,气体渗氮与N+Q复合处理都能有效降低摩擦因数。在20 N载荷时,N+Q复合处理试样体积磨损率低于渗氮与淬火试样;而在100 N载荷时,因其表面孔隙,使得初始磨损比淬火试样严重,但是磨损一段时间后耐磨性能提高。  相似文献   

13.
利用针状铬丝在Q235钢表面进行1000 ℃×4 h等离子渗铬,对渗铬试样分别进行(480、520、560 ℃)×6 h的离子渗氮处理.对经过渗铬和离子渗氮处理的试样进行磨粒磨损耐磨性试验.结果表明,Q235钢渗铬后表面铬含量为22wt%,渗层厚度为50 μm.渗铬层经渗氮处理形成了含铬氮化物(CrN、Cr2N)及少量含铬碳化物(Cr23C6)组成的表面强化层,表面显微硬度最高达1500 HV0.1.磨粒磨损试验表明,与未处理Q235 试样比较,渗铬并经过480、520、560 ℃离子渗氮处理的试样耐磨性分别提高了1.50、3.05和1.44倍;520 ℃离子渗氮试样较T10钢淬火+低温回火试样及3Cr13离子渗氮试样分别提高了2.20倍和2.73倍.  相似文献   

14.
在不同温度下对S32205双相不锈钢进行离子渗氮,利用光学显微镜、显微硬度计、电化学测试仪、XRD等对渗氮层组织性能进行分析。结果表明,400℃离子渗氮4 h工艺条件下,渗氮层由γN相构成,自腐蚀电位由基材的-0.294 V升高至-0.271 V,表面硬度可达到966 HV0.01,为基材表面硬度的2.5倍,渗氮层深为8μm,该温度下离子渗氮可同时提高S32205双相不锈钢耐蚀性和表面硬度。随着渗氮温度升高,在450℃和500℃渗氮时虽然渗氮层深和硬度明显提高,然而由于Cr N的析出,耐蚀性均低于基材。  相似文献   

15.
采用预三价镀铬再穿透气体渗氮的方法,在纯铁表面制备CrN/Cr_2N涂层。研究不同镀铬层厚度、渗氮温度和时间所形成涂层的微观结构和相组成变化规律。随渗氮温度从540℃提高到700℃,镀铬层相结构变化为:Cr→CrN/Cr_2N(具有超点阵结构的Cr_2N)→CrN/Cr_2N。在同一温度(640℃)渗氮,随时间延长,Cr→CrN/Cr_2N,形成大量具有超点阵结构的Cr_2N相。SEM/EPMA测试结果表明,采用该复合处理制备的氮化铬层与基体间可形成互扩散的冶金结合,实现氮化铬层与基体间在组织结构上的平缓过渡,有利于提高涂层性能。  相似文献   

16.
周武  王敏  赵同新  卢军  杨旗 《金属热处理》2022,47(11):147-151
采用离子渗氮工艺对一种Fe-C-Cr-Ni-Mn-V沉淀硬化型奥氏体不锈钢进行表面改性处理。利用光学显微镜(OM)、X射线衍射(XRD)、电子探针显微分析仪(EPMA)和维氏硬度计对不同离子渗氮温度下渗层的组织和性能进行了研究。结果表明,Fe-C-Cr-Ni-Mn-V沉淀硬化型奥氏体不锈钢经430~520 ℃离子渗氮处理10 h后,试样表面均形成一层厚度均匀的渗氮层,表面硬度显著增大。随着离子渗氮温度的升高,渗层厚度增大,520 ℃渗氮时渗层厚度达到78 μm。当渗氮温度为430 ℃时,渗层表面主要由γN+CrN+γ′-Fe4N相组成;当渗氮温度升高至520 ℃时,渗层表面主要由γ′-Fe4N+CrN+ε-Fe2-3N相组成。在3种渗氮温度下,渗层中均有CrN析出,导致渗层耐蚀性低于基体组织。  相似文献   

17.
目的提高F51双相不锈钢的硬度以及耐磨性能。方法将F51双相不锈钢进行低温(450℃)和高温(550℃)离子渗氮处理,利用光学显微镜(OM)、扫描电子显微镜(SEM)观察F51双相不锈钢渗氮层的微观组织,利用X射线衍射(XRD)方法对渗氮层沿深度方向相组成的变化进行分析,采用显微硬度计、摩擦磨损实验机分别对渗氮层的显微硬度及耐磨性能进行测试,采用激光扫描共聚焦显微镜(LSCM)对磨痕形貌进行观察。结果F51双相不锈钢低温渗氮层主要由N相组成,由表及里为N N+N(少量);高温渗氮层主要由CrN+N相组成,由表及里为CrN+N N+N。高温渗氮层厚度约为低温渗氮层厚度的3倍。低温渗氮样品的平均表面硬度约为基体表面硬度的3.5倍;高温渗氮样品的平均表面硬度约为基体硬度的4倍。基体的摩擦系数约为0.71,低温和高温渗氮处理后样品的摩擦系数大大降低,分别为0.24和0.17。渗氮样品磨痕的宽度和深度较基体显著降低。结论F51双相不锈钢低温渗氮层主要由N相组成,高温渗氮层主要由CrN+N相组成,两种温度渗氮后的样品硬度和耐磨性均得到显著提高。  相似文献   

18.
利用脉冲直流辉光等离子技术,对1Cr11Ni2W2MoV马氏体热强不锈钢进行不同工艺参数的离子渗氮。利用光学显微镜、显微硬度计、XRD对渗氮层的显微组织及硬度进行了分析。结果表明,在所选用的离子渗氮工艺参数下,1Cr11Ni2W2MoV钢渗层只由扩散层组成,渗氮温度≤560℃时,渗层主要由固溶N原子的α相组成,并伴有少量的γ'-Fe4N和CrN析出;随着渗氮温度的升高和渗氮时间的延长,固溶N原子的α相逐渐转变成γ'-Fe4N相,当处理温度达到590℃时,渗层主要由γ'-Fe4N和Cr N组成。离子渗氮后渗层的表面硬度较未渗氮前有显著的提高,在一定范围内,渗层的表面硬度和渗层深度都随着渗氮温度和渗氮时间的增加而增加,渗层硬度梯度分布也随着渗氮时间的延长变得平缓。  相似文献   

19.
王振玲 《金属热处理》2019,44(9):119-123
通过光学显微镜、X射线衍射仪、洛氏硬度计、摩擦磨损试验机和电化学工作站研究了预氧化温度对40Cr钢渗氮层的组织、硬度、耐磨和耐蚀性能的影响。40Cr钢渗氮前分别在350、400和450℃进行预氧化30 min,随后采用密封钢罐法对40Cr钢渗氮处理,渗氮工艺为600℃×4 h。结果表明:在400~450℃预氧化30 min具有显著的催渗作用,此时渗氮层厚度较厚,达到100~140μm,渗层组织由ε-Fe_3N和γ'-Fe_4N相组成。此时,40Cr钢渗氮层硬度和耐磨性能明显改善,硬度高达74. 96~76. 80 HRC,摩擦磨损质量损失较小,摩擦因数也较小,在0. 35~0. 65之间波动; 400℃预氧化后渗氮层耐腐蚀性能略有改善; 450℃时自腐蚀电位显著增大,达到-0. 026 V,但自腐蚀电流密度略有增加。  相似文献   

20.
对12Cr1MoV钢进行了气体催化渗氮表面改性处理,通过光学显微镜、扫描电镜和X射线衍射仪分析了渗氮层组织和物相,利用显微硬度计和摩擦磨损试验机评价了其力学性能。结果表明:采用气体催化渗氮处理后的样件表面形成了13μm厚的ε-Fe_(2-3)N化合物层以及约900μm扩散层;化合物层表面显微压痕无开裂现象,拉伸试验时化合物层无崩落现象,这表明气体催化渗氮改善了化合物层的强韧性;渗氮后12Cr1MoV钢的强度提高,其屈服强度为460 MPa,抗拉强度为550 MPa,伸长率约为10.9%。摩擦磨损试验表明12Cr1MoV催化气体渗氮后具有较好的耐磨性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号