共查询到20条相似文献,搜索用时 15 毫秒
1.
石墨表面金属化对铜基复合材料摩擦学性能的影响 总被引:1,自引:1,他引:1
利用化学镀技术制备镀铜和镀镍石墨粉,采用粉末冶金复压复烧工艺制备铜基石墨自润滑复合材料,测试了复合材料的摩擦磨损性能,利用X射线衍射、扫描电镜和能谱仪等分析该复合材料的结构、摩擦磨损性能及机理。结果表明:石墨表面铜、镍镀层改善了石墨和铜合金基体界面结合,摩擦过程中所形成的润滑膜与基体粘附性好,显示出更好的润滑减摩效果,摩擦副摩擦因数由0.24降低到0.20,磨损率降低约50%;实验条件下,6%(质量分数)石墨铜基复合材料经历轻微磨损、中等磨损和严重磨损3个磨损过程;而6%镀铜、镀镍石墨铜基复合材料只经历轻微磨损和中等磨损两个磨损过程。 相似文献
2.
用等离子喷涂法成功制备了SiCp/FeS复合涂层,SiC颗粒尺寸为纳米级,均匀分布于FeS基体,涂层和40Cr钢基体结合良好.研究了FeS涂层和SiCp/FeS复合涂层的摩擦学性能.结果表明,SiCp/FeS复合涂层兼具优良的减摩性能和耐磨性能.在干摩擦条件下,掺入质量分数为0.2和0.3的纳米SiC颗粒时,摩擦系数和FeS涂层接近,但表面磨损体积显著降低,降幅可达1个数量级;油润滑条件下,SiCp/FeS复合涂层的摩擦系数低于FeS涂层,复合涂层具有比FeS涂层更佳的减摩性能. 相似文献
3.
热挤压变形改善Cu/FeS复合材料的性能 总被引:1,自引:0,他引:1
利用金相显微镜,透射电镜和硬度实验等手段考察了不同Fes含量Cu/Fes复合材料挤压前后的显微组织和性能变化.结果表明:经过热挤压后的复合材料组织均匀性得到了极大的改善,纵截面出现了纤维状排列的组织,材料的致密度和硬度得到改善,电导率有所降低,并分析了其原因. 相似文献
4.
采用粉末冶金方法在相同的工艺条件下制备纯铜和碳纳米管含量为10%(体积分数)的铜基复合材料。在一种销盘式载流摩擦磨损试验机上考察了不同电流条件下2种材料的载流摩擦磨损性能。结果表明:纯铜和铜基复合材料的摩擦系数和磨损率均随电流的增大而增大,但是电流对纯铜材料的影响更加显著;纯铜材料的主导磨损机制是电弧烧蚀磨损,而铜基复合材料的主导磨损机制是塑性流动变形;碳纳米管可以改善铜基复合材料的载流摩擦磨损性能。 相似文献
5.
目的对比研究铜基石墨复合材料耐磨层(SY-01)以及铜基聚四氟乙烯复合材料耐磨层(SY-02)的各种性能,以期选择最佳耐磨板材料。方法利用扫描电镜及配套的能谱分析仪分析两种耐磨层的微观结构及化学成分,利用压汞法测试耐磨层的孔隙分布以及孔隙率值,并分析两种耐磨层的显微硬度及抗冲击性能。此外,还采用SRV-4高温摩擦磨损试验机测试两种耐磨层的摩擦学性能。结果 SY-01试样耐磨层的孔隙率为28.04%,SY-02试样耐磨层的孔隙率为7.43%。SY-01耐磨层的显微硬度分布比较均匀,平均硬度为52.75HV0.5;SY-02耐磨层不同位置的显微硬度值相差较大,共混区的硬度在32HV0.5左右。相同摩擦工况下,SY-01试样磨痕深度为3.50μm,SY-02试样磨痕深度为11.0μm,约为SY-01试样磨痕深度的3倍。结论 SY-01耐磨层的显微硬度、抗冲击性能以及摩擦学性能均优于SY-02耐磨层。SY-01耐磨层的摩擦磨损机制表现为磨粒磨损和粘着磨损,SY-02耐磨层的摩擦磨损机制主要为磨粒磨损。 相似文献
6.
7.
8.
采用放电等离子烧结(SPS)方法制备了低金刚石含量的金刚石/铜基复合材料,研究了金刚石含量对复合材料的致密度、热导率、抗拉强度和伸长率等的影响。结果表明,随着金刚石含量的增加,金刚石/铜基复合材料的致密度、热导率、力学性能都先增后减。当金刚石含量为1.0%时,复合材料的抗拉强度达到221.35 MPa;在金刚石含量为1.5%时致密度达到最大值;热导率和伸长率都是在金刚石含量为2.0%时达到最大值。金刚石/铜基复合材料的断裂机制主要是韧性断裂以及增强体界面剥离。 相似文献
9.
10.
为研究生理盐水润滑条件下碳酸钙晶须含量、载荷大小、滑动速度因素对PEEK/CaCO3复合材料摩擦学性能的影响规律,并考察复合材料的摩擦学稳定性,在自制改性偶联剂处理晶须表面的基础上制备了PEEK/CaCO3复合材料,利用MMW1A立式万能摩擦磨损试验机对复合材料的摩擦学性能进行测试,用扫描电子显微镜(SEM)对磨损表面形貌进行扫描分析表征。结果表明,晶须含量对复合材料摩擦学性能影响明显,在0.9%的生理盐水润滑条件下PEEK/CaCO3复合材料随着晶须含量的增加,摩擦因数及比磨损率均呈现先减小后增大现象;当晶须质量分数为15%左右时,复合材料的摩擦因数达到最低值,同时比磨损量相对最低,复合材料与摩擦副的磨合过程相对平稳,具有较好的摩擦学性能,表现为粘着腐蚀磨损特征。外加载荷、滑动速度增大,材料的摩擦因数增大,比磨损率增加。 相似文献
11.
目的 考察环氧/聚氨酯(EP/PU)互穿网络复合材料在宽温域环境中的摩擦学性能,以及氧化石墨烯(GO)的添加对其摩擦学性能的影响。方法 制备EP、EP/GO、EP/PU、EP/PU/GO等4种材料,其中EP和PU的质量配比为3︰1,GO的质量分数为1.0%。分别研究4种材料的热力学性能,并采用高低温摩擦试验机对比研究常温和–100、–50、50、100 ℃下GO对EP/PU互穿网络材料摩擦磨损的影响。结果 热力学性能结果表明,PU的加入降低了起始分解温度,而加入GO,热分解起始温度有所提升,EP的拉伸强度最高约为90 MPa。室温条件下,200 r/min时,样品的摩擦因数和磨损率要优于400、500 r/min,其中,EP/PU/GO在200 r/min时的摩擦因数最低,为0.03。同样地,在–50、50、100 ℃时,相对于EP、EP/GO和EP/PU,EP/PU/GO也表现出优异的润滑性和耐磨性。SEM及XPS结果表明,摩擦氧化和螯合反应促进了转移膜的生长,形成了均匀结构的转移膜,可避免摩擦副的直接接触,有利于润滑作用。结论 添加GO可以有效改善材料的力学性能,提高EP/PU的摩擦学性能。 相似文献
12.
利用原位反应合成法制备Cu/FeS复合材料,研究了CuS和Fe的含量对该复合材料相组成和形貌的影响;采用X射线衍射仪、光学显微镜和扫描电镜对样品的相组成、显微结构和形貌进行了分析。结果表明:FeS弥散分布于Cu/FeS复合材料中,同时,热力学计算表明了该实验方案的可行性。 相似文献
13.
采用感应加热烧结粉末冶金的方法,以铜铁合金为基体,添加石墨制备石墨/铜铁基自润滑复合材料,对比研究了添加石墨前后2种材料的组成、结构、表面形貌及摩擦学性能,并分析了磨损机理。研究结果表明:添加石墨能起到润滑作用,使材料的摩擦因数减小,磨损率降低;添加的石墨一部分转化成新态,其余则进入材料的空隙中,在摩擦过程中形成润滑膜起到减摩的作用;添加石墨后,摩擦材料的磨损机制由粘着磨损变为磨粒磨损。 相似文献
14.
研究了铜-30%(体积分数,下同)石墨、铜-30%二硫化钨和铜-30%二硫化钼3种铜基自润滑复合材料的抗电弧烧蚀性能。结果表明:石墨熔点较高,在电弧放电瞬间主要以氧化的形式损耗,而二硫化钨和二硫化钼则会在电弧放电造成的高温下发生熔化甚至与铜基体发生化学反应,所以铜-30%石墨复合材料的抗电弧烧蚀性能要优于铜-30%二硫化钨和铜-30%二硫化钼复合材料。铜基自润滑复合材料的电弧烧损机制主要有材料的氧化、熔化飞溅、内部化学反应以及疲劳脱落。 相似文献
15.
采用粉末冶金方法制备了铜基功能梯度复合材料.对铜基梯度复合材料的机械性能电性能及摩擦学性能的测试表明表层与底层组成为Cu-C-MoS2/Cu-ZrO2的功能梯度复合材料具有强度高,导电性好,耐磨性好的特点.材料的微观结构和摩擦磨损表面形貌分析表明,铜基功能梯度复合材料界面结合性好,组织均匀;润滑相组织弥散细小.同时兼有优良的机械性能和摩擦磨损性能. 相似文献
16.
为了改善石墨烯在铜基体中的分散性和界面结合性,采用溶液混合法、球磨法使石墨烯包覆铜粉颗粒,采用真空热压烧结法制备石墨烯/铜基(GR/Cu)复合材料。利用扫描电子显微镜(SEM)观察复合粉体形貌,测试材料的致密度、硬度、导电性及摩擦磨损性能,并根据摩擦表面形貌分析磨损机制。结果表明:石墨烯能够均匀分散在铜基体中,随着石墨烯含量的增加,复合材料的硬度呈先增加后减小的趋势。当石墨烯质量分数为0.3wt%时复合材料综合性能较好,显微硬度为80 HV,比纯铜提高了12.7%,磨损量比纯铜减少了33%。 相似文献
17.
《特种铸造及有色合金》2017,(6)
以水雾化铜粉为基体,加入SiC_p作为增强相,添加铁粉做强化组元,石墨为润滑剂,利用粉末冶金法通过热压烧结工艺制备了SiC_p/Cu复合材料。在MRH-3型高速环块磨损试验机上研究了复合材料在室温下的摩擦磨损性能。分析了SiC_p含量对复合材料力学性能及耐磨性能的影响。结果表明,SiC_p/Cu复合材料在力学性能、耐磨性能方面均表现良好;随着SiC_p含量增加,复合材料的相对密度逐渐下降,孔隙率逐渐增加,布氏硬度、抗弯强度以及耐磨性能均是先增大后减小;综合性能较好的是SiC_p含量为7.5%的试样;磨损机理为磨粒磨损和粘着磨损。 相似文献
18.
19.
20.
采用粉末冶金法制备添加0.75%的纳米SiO2(n-SiO2)和0.75%Cu包覆纳米SiO2(Cu/n-SiO2)复合粉体的新型铜基摩擦材料.采用惯性台架实验机,研究比较两种材料与未添加纳米SiO2的材料的摩擦学性能.结果表明:在铜基摩擦材料中添加微量n-SiO2可改善材料的耐磨性和耐热性;添加Cu/n-SiO2的铜基摩擦材料,耐热性提高32%,耐磨性提高2.02倍;添加n-SiO2的摩擦材料,耐热性提高7%,耐磨性提高18%;经铜包覆处理后的n-SiO2对材料性能的影响优于未处理的n-SiO2. 相似文献